論文の概要: Exploring Lightweight Federated Learning for Distributed Load Forecasting
- arxiv url: http://arxiv.org/abs/2404.03320v1
- Date: Thu, 4 Apr 2024 09:35:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 15:14:12.796500
- Title: Exploring Lightweight Federated Learning for Distributed Load Forecasting
- Title(参考訳): 分散負荷予測のための軽量フェデレーション学習の探索
- Authors: Abhishek Duttagupta, Jin Zhao, Shanker Shreejith,
- Abstract要約: Federated Learning(FL)は、ディープラーニングを機密データストリームやアプリケーションに対して、プライバシ保護の方法で適用するための分散学習スキームである。
我々は、軽量で完全に接続されたディープニューラルネットワークにより、既存のスキームに匹敵する予測精度を達成することができることを示した。
- 参考スコア(独自算出の注目度): 0.864902991835914
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) is a distributed learning scheme that enables deep learning to be applied to sensitive data streams and applications in a privacy-preserving manner. This paper focuses on the use of FL for analyzing smart energy meter data with the aim to achieve comparable accuracy to state-of-the-art methods for load forecasting while ensuring the privacy of individual meter data. We show that with a lightweight fully connected deep neural network, we are able to achieve forecasting accuracy comparable to existing schemes, both at each meter source and at the aggregator, by utilising the FL framework. The use of lightweight models further reduces the energy and resource consumption caused by complex deep-learning models, making this approach ideally suited for deployment across resource-constrained smart meter systems. With our proposed lightweight model, we are able to achieve an overall average load forecasting RMSE of 0.17, with the model having a negligible energy overhead of 50 mWh when performing training and inference on an Arduino Uno platform.
- Abstract(参考訳): Federated Learning(FL)は、ディープラーニングを機密データストリームやアプリケーションに対して、プライバシ保護の方法で適用するための分散学習スキームである。
本稿では,各メータデータのプライバシを確保しつつ,負荷予測の最先端手法に匹敵する精度を実現することを目的とした,スマートエネルギメータデータ解析のためのFLの利用に焦点を当てた。
我々は、軽量で完全に接続されたディープニューラルネットワークにより、FLフレームワークを利用することで、各メーターソースとアグリゲータの両方で既存のスキームに匹敵する予測精度を達成することができることを示す。
軽量モデルを使用することで、複雑なディープラーニングモデルによるエネルギーとリソース消費をさらに削減し、リソースに制約のあるスマートメーターシステムへのデプロイに理想的になる。
提案した軽量モデルにより,Arduino Unoプラットフォーム上でのトレーニングおよび推論を行う際に,エネルギーオーバーヘッドが50mWhと無視できる平均負荷予測RMSEの0.17を達成することができる。
関連論文リスト
- Electrical Load Forecasting in Smart Grid: A Personalized Federated Learning Approach [9.687203504689563]
スマートグリッドの電力管理と安定性には電力負荷予測が不可欠である。
従来の機械学習(ML)手法は負荷予測によく使用されるが、データ共有は必要である。
フェデレートラーニング(FL)は、データ交換なしでローカルSMで分散MLモデルを実行することでこの問題に対処できる。
論文 参考訳(メタデータ) (2024-11-15T22:44:50Z) - Few-Shot Load Forecasting Under Data Scarcity in Smart Grids: A Meta-Learning Approach [0.18641315013048293]
本稿では,短期負荷予測のためのモデルに依存しないメタ学習アルゴリズムを提案する。
提案手法は,任意の長さの未知の負荷時間列に迅速に適応し,一般化することができる。
提案手法は,実世界の消費者の歴史的負荷消費データのデータセットを用いて評価する。
論文 参考訳(メタデータ) (2024-06-09T18:59:08Z) - Addressing Heterogeneity in Federated Load Forecasting with Personalization Layers [3.933147844455233]
PL-FLと呼ばれる一般的なフレームワークにおいて,負荷予測のためのパーソナライズレイヤを提案する。
PL-FLはFLよりも通信帯域幅が小さいため、FLと純粋に局所訓練に優れることを示す。
論文 参考訳(メタデータ) (2024-04-01T22:53:09Z) - MobiLlama: Towards Accurate and Lightweight Fully Transparent GPT [87.4910758026772]
近年のLarge Language Models (LLM) 開発において,"Bigger the Better" が主流となっている。
本稿では、リソース制約のあるデバイスに対して、正確かつ効率的なSLM(Small Language Models)を設計する上での課題に対処し、"less is more"パラダイムについて考察する。
論文 参考訳(メタデータ) (2024-02-26T18:59:03Z) - Semi-Federated Learning: Convergence Analysis and Optimization of A
Hybrid Learning Framework [70.83511997272457]
本稿では,ベースステーション(BS)とデバイスの両方を活用するセミフェデレーション学習(SemiFL)パラダイムを提案し,中央集権学習(CL)とFLのハイブリッド実装を提案する。
我々はこの難解な問題を解くための2段階のアルゴリズムを提案し、ビームフォーマに閉形式解を提供する。
論文 参考訳(メタデータ) (2023-10-04T03:32:39Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
フェデレーション学習(FL)は、データプライバシを保護しながら、エッジデバイス間での分散学習を可能にする。
これらの課題を克服するために、部分的なモデルプルーニングとパーソナライズを備えたFLフレームワークを検討する。
このフレームワークは、学習モデルを、データ表現を学ぶためにすべてのデバイスと共有されるモデルプルーニングと、特定のデバイスのために微調整されるパーソナライズされた部分とで、グローバルな部分に分割する。
論文 参考訳(メタデータ) (2023-09-04T21:10:45Z) - Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence [83.58839320635956]
フェデレートラーニング(FL)は、モバイルエッジネットワークで機械学習モデルを分散的にトレーニングするために使用することができる。
最近のFLは、モデルに依存しないメタラーニング(MAML)フレームワークで解釈されている。
本稿は,MAMLがFLにもたらすメリットと,モバイルエッジネットワーク上でのメリットの最大化について論じる。
論文 参考訳(メタデータ) (2023-03-23T02:42:10Z) - FedTrees: A Novel Computation-Communication Efficient Federated Learning
Framework Investigated in Smart Grids [8.437758224218648]
次世代のスマートメーターは、エネルギー消費データの測定、記録、および報告に使用することができる。
FedTreesは、アンサンブル学習の際立った特徴の恩恵を受ける、新しくて軽量なFLフレームワークである。
論文 参考訳(メタデータ) (2022-09-30T19:47:46Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
ネットワークデバイス間での分散機械学習を実現するために、フェデレートラーニング(FL)が提案されている。
デバイス上のストレージがFLの性能に与える影響はまだ調査されていない。
本研究では,デバイス上のストレージを限定したFLのオンラインデータ選択について検討する。
論文 参考訳(メタデータ) (2022-09-01T03:27:33Z) - Exploring Deep Reinforcement Learning-Assisted Federated Learning for
Online Resource Allocation in EdgeIoT [53.68792408315411]
フェデレートラーニング(FL)は、モバイルエッジコンピューティングベースのInternet of Thing(EdgeIoT)における盗聴攻撃からデータトレーニングプライバシを保護するために、ますます検討されている。
本研究では,連続領域における最適精度とエネルギー収支を達成するために,FLDLT3フレームワークを提案する。
その結果、FL-DLT3は100回未満の高速収束を実現し、FLの精度-エネルギー消費比は既存の最先端ベンチマークと比較して51.8%向上した。
論文 参考訳(メタデータ) (2022-02-15T13:36:15Z) - Efficient Federated Learning for AIoT Applications Using Knowledge
Distillation [2.5892786553124085]
フェデレートラーニング(FL)は、ユーザのプライバシを損なうことなく、中央モデルを分散データでトレーニングする。
従来のFLは、ハードラベルのデータを使用してローカルモデルをトレーニングするため、モデル不正確さに悩まされている。
本稿では, AIoTアプリケーションに対して, 効率的かつ正確なFLを実現するための, 蒸留に基づく新しいフェデレートラーニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-11-29T06:40:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。