SP$^2$OT: Semantic-Regularized Progressive Partial Optimal Transport for Imbalanced Clustering
- URL: http://arxiv.org/abs/2404.03446v2
- Date: Mon, 30 Jun 2025 15:38:20 GMT
- Title: SP$^2$OT: Semantic-Regularized Progressive Partial Optimal Transport for Imbalanced Clustering
- Authors: Chuyu Zhang, Hui Ren, Xuming He,
- Abstract summary: We introduce a novel optimal transport-based pseudo-label learning framework.<n>Our framework generates high-quality and imbalance-aware pseudo-labels.<n>Experiments on various datasets, including a human-curated long-tailed CIFAR100, demonstrate the superiority of our method.
- Score: 14.880015659013681
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep clustering, which learns representation and semantic clustering without labels information, poses a great challenge for deep learning-based approaches. Despite significant progress in recent years, most existing methods focus on uniformly distributed datasets, significantly limiting the practical applicability of their methods. In this paper, we propose a more practical problem setting named deep imbalanced clustering, where the underlying classes exhibit an imbalance distribution. To address this challenge, we introduce a novel optimal transport-based pseudo-label learning framework. Our framework formulates pseudo-label generation as a Semantic-regularized Progressive Partial Optimal Transport (SP$^2$OT) problem, which progressively transports each sample to imbalanced clusters under prior and semantic relation constraints, thus generating high-quality and imbalance-aware pseudo-labels. To solve the SP$^2$OT problem, we propose a projected mirror descent algorithm, which alternates between: (1) computing the gradient of the SP$^2$OT objective, and (2) performing gradient descent with projection via an entropy-regularized progressive partial optimal transport formulation. Furthermore, we formulate the second step as an unbalanced optimal transport problem with augmented constraints and develop an efficient solution based on fast matrix scaling algorithms. Experiments on various datasets, including a human-curated long-tailed CIFAR100, challenging ImageNet-R, and large-scale subsets of fine-grained iNaturalist2018 datasets, demonstrate the superiority of our method. Code is available: https://github.com/rhfeiyang/SPPOT
Related papers
- Exact and Heuristic Algorithms for Constrained Biclustering [0.0]
Biclustering, also known as co-clustering or two-way clustering, simultaneously partitions the rows and columns of a data matrix to reveal submatrices with coherent patterns.<n>We study constrained biclustering with pairwise constraints, namely must-link and cannot-link constraints, which specify whether objects should belong to the same or different biclusters.
arXiv Detail & Related papers (2025-08-07T15:29:22Z) - Decentralized Nonconvex Composite Federated Learning with Gradient Tracking and Momentum [78.27945336558987]
Decentralized server (DFL) eliminates reliance on client-client architecture.
Non-smooth regularization is often incorporated into machine learning tasks.
We propose a novel novel DNCFL algorithm to solve these problems.
arXiv Detail & Related papers (2025-04-17T08:32:25Z) - Strong bounds for large-scale Minimum Sum-of-Squares Clustering [0.9831489366502302]
Minimum Sum-of-Squares Clustering (MSSC) is one of the most widely used clustering methods.
MSSC aims to minimize the total squared Euclidean distance between data points and their corresponding cluster centroids.
We introduce a novel method to validate MSSC solutions through optimality gaps.
arXiv Detail & Related papers (2025-02-12T13:40:00Z) - Stochastic Constrained Decentralized Optimization for Machine Learning with Fewer Data Oracles: a Gradient Sliding Approach [32.36073823372713]
In machine-learning models, the algorithm has to communicate to the data center and sample data for its gradient.
This gives rise to the need for a decentralized optimization algorithm that is communication-efficient and minimizes the number of gradient computations.
We propose a primal-dual sliding with conditional gradient sliding framework, which is communication-efficient and achieves an $varepsilon$-approximate solution.
arXiv Detail & Related papers (2024-04-03T06:55:59Z) - P$^2$OT: Progressive Partial Optimal Transport for Deep Imbalanced
Clustering [16.723646401890495]
We propose a novel pseudo-labeling-based learning framework for deep clustering.
Our framework generates imbalance-aware pseudo-labels and learning from high-confident samples.
Experiments on various datasets, including a human-curated long-tailed CIFAR100, demonstrate the superiority of our method.
arXiv Detail & Related papers (2024-01-17T15:15:46Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - Information Theoretical Importance Sampling Clustering [18.248246885248733]
A current assumption of most clustering methods is that the training data and future data are taken from the same distribution.
We propose an information theoretical importance sampling based approach for clustering problems (ITISC)
Experiment results on synthetic datasets and a real-world load forecasting problem validate the effectiveness of the proposed model.
arXiv Detail & Related papers (2023-02-09T03:18:53Z) - A Variance-Reduced Stochastic Gradient Tracking Algorithm for
Decentralized Optimization with Orthogonality Constraints [7.028225540638832]
We propose a novel algorithm for decentralized optimization with orthogonality constraints.
VRSGT is the first algorithm for decentralized optimization with orthogonality constraints that reduces both sampling and communication complexities simultaneously.
In the numerical experiments, VRGTS has a promising performance in a real-world autonomous sample.
arXiv Detail & Related papers (2022-08-29T14:46:44Z) - Communication-Efficient Robust Federated Learning with Noisy Labels [144.31995882209932]
Federated learning (FL) is a promising privacy-preserving machine learning paradigm over distributed located data.
We propose a learning-based reweighting approach to mitigate the effect of noisy labels in FL.
Our approach has shown superior performance on several real-world datasets compared to various baselines.
arXiv Detail & Related papers (2022-06-11T16:21:17Z) - Local Stochastic Bilevel Optimization with Momentum-Based Variance
Reduction [104.41634756395545]
We study Federated Bilevel Optimization problems. Specifically, we first propose the FedBiO, a deterministic gradient-based algorithm.
We show FedBiO has complexity of $O(epsilon-1.5)$.
Our algorithms show superior performances compared to other baselines in numerical experiments.
arXiv Detail & Related papers (2022-05-03T16:40:22Z) - An Exact Algorithm for Semi-supervised Minimum Sum-of-Squares Clustering [0.5801044612920815]
We present a new branch-and-bound algorithm for semi-supervised MSSC.
Background knowledge is incorporated as pairwise must-link and cannot-link constraints.
For the first time, the proposed global optimization algorithm efficiently manages to solve real-world instances up to 800 data points.
arXiv Detail & Related papers (2021-11-30T17:08:53Z) - A Stochastic Alternating Balance $k$-Means Algorithm for Fair Clustering [0.0]
In the application of data clustering to human-centric decision-making systems, such as loan applications and advertisement, the clustering outcome might discriminate against people across different demographic groups.
We propose a novel alternating balance mini-batch $k$-means (SAKM) algorithm, which consists of $k$-means updates and group swap updates.
arXiv Detail & Related papers (2021-05-29T01:47:15Z) - A Momentum-Assisted Single-Timescale Stochastic Approximation Algorithm
for Bilevel Optimization [112.59170319105971]
We propose a new algorithm -- the Momentum- Single-timescale Approximation (MSTSA) -- for tackling problems.
MSTSA allows us to control the error in iterations due to inaccurate solution to the lower level subproblem.
arXiv Detail & Related papers (2021-02-15T07:10:33Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z) - Boosting Data Reduction for the Maximum Weight Independent Set Problem
Using Increasing Transformations [59.84561168501493]
We introduce new generalized data reduction and transformation rules for the maximum weight independent set problem.
Surprisingly, these so-called increasing transformations can simplify the problem and also open up the reduction space to yield even smaller irreducible graphs later in the algorithm.
Our algorithm computes significantly smaller irreducible graphs on all except one instance, solves more instances to optimality than previously possible, is up to two orders of magnitude faster than the best state-of-the-art solver, and finds higher-quality solutions than solvers DynWVC and HILS.
arXiv Detail & Related papers (2020-08-12T08:52:50Z) - A Two-Timescale Framework for Bilevel Optimization: Complexity Analysis
and Application to Actor-Critic [142.1492359556374]
Bilevel optimization is a class of problems which exhibit a two-level structure.
We propose a two-timescale approximation (TTSA) algorithm for tackling such a bilevel problem.
We show that a two-timescale natural actor-critic policy optimization algorithm can be viewed as a special case of our TTSA framework.
arXiv Detail & Related papers (2020-07-10T05:20:02Z) - Semi-Supervised Learning with Meta-Gradient [123.26748223837802]
We propose a simple yet effective meta-learning algorithm in semi-supervised learning.
We find that the proposed algorithm performs favorably against state-of-the-art methods.
arXiv Detail & Related papers (2020-07-08T08:48:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.