Deciphering Political Entity Sentiment in News with Large Language Models: Zero-Shot and Few-Shot Strategies
- URL: http://arxiv.org/abs/2404.04361v1
- Date: Fri, 5 Apr 2024 19:14:38 GMT
- Title: Deciphering Political Entity Sentiment in News with Large Language Models: Zero-Shot and Few-Shot Strategies
- Authors: Alapan Kuila, Sudeshna Sarkar,
- Abstract summary: We investigate the effectiveness of Large Language Models (LLMs) in predicting entity-specific sentiment from political news articles.
We employ a chain-of-thought (COT) approach augmented with rationale in few-shot in-context learning.
We find that learning in-context significantly improves model performance, while the self-consistency mechanism enhances consistency in sentiment prediction.
- Score: 0.5459032912385802
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Sentiment analysis plays a pivotal role in understanding public opinion, particularly in the political domain where the portrayal of entities in news articles influences public perception. In this paper, we investigate the effectiveness of Large Language Models (LLMs) in predicting entity-specific sentiment from political news articles. Leveraging zero-shot and few-shot strategies, we explore the capability of LLMs to discern sentiment towards political entities in news content. Employing a chain-of-thought (COT) approach augmented with rationale in few-shot in-context learning, we assess whether this method enhances sentiment prediction accuracy. Our evaluation on sentiment-labeled datasets demonstrates that LLMs, outperform fine-tuned BERT models in capturing entity-specific sentiment. We find that learning in-context significantly improves model performance, while the self-consistency mechanism enhances consistency in sentiment prediction. Despite the promising results, we observe inconsistencies in the effectiveness of the COT prompting method. Overall, our findings underscore the potential of LLMs in entity-centric sentiment analysis within the political news domain and highlight the importance of suitable prompting strategies and model architectures.
Related papers
- Decoding AI Judgment: How LLMs Assess News Credibility and Bias [0.0]
Large Language Models (LLMs) are increasingly used to assess news credibility, yet little is known about how they make these judgments.
This study benchmarks the reliability and political classifications of state-of-the-art LLMs against structured, expert-driven rating systems.
We uncover patterns in how LLMs associate credibility with specific linguistic features by examining keyword frequency, contextual determinants, and rank distributions.
arXiv Detail & Related papers (2025-02-06T18:52:10Z) - Con-ReCall: Detecting Pre-training Data in LLMs via Contrastive Decoding [118.75567341513897]
Existing methods typically analyze target text in isolation or solely with non-member contexts.
We propose Con-ReCall, a novel approach that leverages the asymmetric distributional shifts induced by member and non-member contexts.
arXiv Detail & Related papers (2024-09-05T09:10:38Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
We propose a novel, yet elegantly simple approach for detecting adversarial samples in Vision-Language Models.
Our method leverages Text-to-Image (T2I) models to generate images based on captions produced by target VLMs.
Empirical evaluations conducted on different datasets validate the efficacy of our approach.
arXiv Detail & Related papers (2024-06-13T15:55:04Z) - PoliTune: Analyzing the Impact of Data Selection and Fine-Tuning on Economic and Political Biases in Large Language Models [1.1704154007740835]
This work investigates the impact of fine-tuning and data selection on economic and political biases in Large Language Models (LLMs)
We introduce PoliTune, a fine-tuning methodology to explore the systematic aspects of aligning LLMs with specific ideologies.
We introduce a systematic method for using the open-source Llama3-70B for dataset selection, annotation, and synthesizing a preferences dataset for Direct Preference Optimization (DPO) to align the model with a given political ideology.
arXiv Detail & Related papers (2024-04-10T16:30:09Z) - LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models [75.89014602596673]
Strategic reasoning requires understanding and predicting adversary actions in multi-agent settings while adjusting strategies accordingly.
We explore the scopes, applications, methodologies, and evaluation metrics related to strategic reasoning with Large Language Models.
It underscores the importance of strategic reasoning as a critical cognitive capability and offers insights into future research directions and potential improvements.
arXiv Detail & Related papers (2024-04-01T16:50:54Z) - SA-Attack: Improving Adversarial Transferability of Vision-Language
Pre-training Models via Self-Augmentation [56.622250514119294]
In contrast to white-box adversarial attacks, transfer attacks are more reflective of real-world scenarios.
We propose a self-augment-based transfer attack method, termed SA-Attack.
arXiv Detail & Related papers (2023-12-08T09:08:50Z) - Inducing Political Bias Allows Language Models Anticipate Partisan
Reactions to Controversies [5.958974943807783]
This study addresses the challenge of understanding political bias in digitized discourse using Large Language Models (LLMs)
We present a comprehensive analytical framework, consisting of Partisan Bias Divergence Assessment and Partisan Class Tendency Prediction.
Our findings reveal the model's effectiveness in capturing emotional and moral nuances, albeit with some challenges in stance detection.
arXiv Detail & Related papers (2023-11-16T08:57:53Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
Large Language Models (LLMs) have sparked intense debate regarding the prevalence of bias in these models and its mitigation.
We propose a prompt-based method for the extraction of confounding and mediating attributes which contribute to the decision process.
We find that the observed disparate treatment can at least in part be attributed to confounding and mitigating attributes and model misalignment.
arXiv Detail & Related papers (2023-11-15T00:02:25Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
This paper investigates the capabilities of large language models (LLMs) in performing various sentiment analysis tasks.
We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets.
arXiv Detail & Related papers (2023-05-24T10:45:25Z) - REDAffectiveLM: Leveraging Affect Enriched Embedding and
Transformer-based Neural Language Model for Readers' Emotion Detection [3.6678641723285446]
We propose a novel approach for Readers' Emotion Detection from short-text documents using a deep learning model called REDAffectiveLM.
We leverage context-specific and affect enriched representations by using a transformer-based pre-trained language model in tandem with affect enriched Bi-LSTM+Attention.
arXiv Detail & Related papers (2023-01-21T19:28:25Z) - Interpretable Fake News Detection with Topic and Deep Variational Models [2.15242029196761]
We focus on fake news detection using interpretable features and methods.
We have developed a deep probabilistic model that integrates a dense representation of textual news.
Our model achieves comparable performance to state-of-the-art competing models.
arXiv Detail & Related papers (2022-09-04T05:31:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.