AI Knowledge and Reasoning: Emulating Expert Creativity in Scientific Research
- URL: http://arxiv.org/abs/2404.04436v1
- Date: Fri, 5 Apr 2024 22:30:47 GMT
- Title: AI Knowledge and Reasoning: Emulating Expert Creativity in Scientific Research
- Authors: Anirban Mukherjee, Hannah Hanwen Chang,
- Abstract summary: We introduce novel methodology that utilizes original research articles published after the AI's training cutoff.
The AI are tasked with redacting findings, predicting outcomes from redacted research, and assessing prediction accuracy against reported results.
- Score: 0.2209921757303168
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate whether modern AI can emulate expert creativity in complex scientific endeavors. We introduce novel methodology that utilizes original research articles published after the AI's training cutoff, ensuring no prior exposure, mitigating concerns of rote memorization and prior training. The AI are tasked with redacting findings, predicting outcomes from redacted research, and assessing prediction accuracy against reported results. Analysis on 589 published studies in four leading psychology journals over a 28-month period, showcase the AI's proficiency in understanding specialized research, deductive reasoning, and evaluating evidentiary alignment--cognitive hallmarks of human subject matter expertise and creativity. These findings suggest the potential of general-purpose AI to transform academia, with roles requiring knowledge-based creativity become increasingly susceptible to technological substitution.
Related papers
- OlympicArena: Benchmarking Multi-discipline Cognitive Reasoning for Superintelligent AI [73.75520820608232]
We introduce OlympicArena, which includes 11,163 bilingual problems across both text-only and interleaved text-image modalities.
These challenges encompass a wide range of disciplines spanning seven fields and 62 international Olympic competitions, rigorously examined for data leakage.
Our evaluations reveal that even advanced models like GPT-4o only achieve a 39.97% overall accuracy, illustrating current AI limitations in complex reasoning and multimodal integration.
arXiv Detail & Related papers (2024-06-18T16:20:53Z) - Generative AI in Writing Research Papers: A New Type of Algorithmic Bias
and Uncertainty in Scholarly Work [0.38850145898707145]
Large language models (LLMs) and generative AI tools present challenges in identifying and addressing biases.
generative AI tools are susceptible to goal misgeneralization, hallucinations, and adversarial attacks such as red teaming prompts.
We find that incorporating generative AI in the process of writing research manuscripts introduces a new type of context-induced algorithmic bias.
arXiv Detail & Related papers (2023-12-04T04:05:04Z) - Analyzing Character and Consciousness in AI-Generated Social Content: A
Case Study of Chirper, the AI Social Network [0.0]
The study embarks on a comprehensive exploration of AI behavior, analyzing the effects of diverse settings on Chirper's responses.
Through a series of cognitive tests, the study gauges the self-awareness and pattern recognition prowess of Chirpers.
An intriguing aspect of the research is the exploration of the potential influence of a Chirper's handle or personality type on its performance.
arXiv Detail & Related papers (2023-08-30T15:40:18Z) - AI empowering research: 10 ways how science can benefit from AI [0.0]
This article explores the transformative impact of artificial intelligence (AI) on scientific research.
It highlights ten ways in which AI is revolutionizing the work of scientists, including powerful referencing tools, improved understanding of research problems, enhanced research question generation, optimized research design, stub data generation, data transformation, advanced data analysis, and AI-assisted reporting.
arXiv Detail & Related papers (2023-07-17T18:41:18Z) - Quantifying the Benefit of Artificial Intelligence for Scientific Research [2.4700789675440524]
We estimate both the direct use of AI and the potential benefit of AI in scientific research.
We find that the use of AI in research is widespread throughout the sciences, growing especially rapidly since 2015.
Our analysis reveals considerable potential for AI to benefit numerous scientific fields, yet a notable disconnect exists between AI education and its research applications.
arXiv Detail & Related papers (2023-04-17T08:08:50Z) - BO-Muse: A human expert and AI teaming framework for accelerated
experimental design [58.61002520273518]
Our algorithm lets the human expert take the lead in the experimental process.
We show that our algorithm converges sub-linearly, at a rate faster than the AI or human alone.
arXiv Detail & Related papers (2023-03-03T02:56:05Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Artificial Intelligence in Concrete Materials: A Scientometric View [77.34726150561087]
This chapter aims to uncover the main research interests and knowledge structure of the existing literature on AI for concrete materials.
To begin with, a total of 389 journal articles published from 1990 to 2020 were retrieved from the Web of Science.
Scientometric tools such as keyword co-occurrence analysis and documentation co-citation analysis were adopted to quantify features and characteristics of the research field.
arXiv Detail & Related papers (2022-09-17T18:24:56Z) - Characterising Research Areas in the field of AI [68.8204255655161]
We identified the main conceptual themes by performing clustering analysis on the co-occurrence network of topics.
The results highlight the growing academic interest in research themes like deep learning, machine learning, and internet of things.
arXiv Detail & Related papers (2022-05-26T16:30:30Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
Psychological curiosity plays a significant role in human intelligence to enhance learning through exploration and information acquisition.
In the Artificial Intelligence (AI) community, artificial curiosity provides a natural intrinsic motivation for efficient learning.
CDL has become increasingly popular, where agents are self-motivated to learn novel knowledge.
arXiv Detail & Related papers (2022-01-20T17:07:03Z) - Systematic Mapping Study on the Machine Learning Lifecycle [4.4090257489826845]
The study yields 405 publications published from 2005 to 2020, mapped in 5 different main research topics, and 31 sub-topics.
We observe that only a minority of publications focus on data management and model production problems, and that more studies should address the AI lifecycle from a holistic perspective.
arXiv Detail & Related papers (2021-03-11T11:44:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.