論文の概要: Gradient-based Design of Computational Granular Crystals
- arxiv url: http://arxiv.org/abs/2404.04825v1
- Date: Sun, 7 Apr 2024 06:24:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 19:30:39.090325
- Title: Gradient-based Design of Computational Granular Crystals
- Title(参考訳): グラディエントに基づく計算粒状結晶の設計
- Authors: Atoosa Parsa, Corey S. O'Hern, Rebecca Kramer-Bottiglio, Josh Bongard,
- Abstract要約: 本研究では,物質中の波動伝搬の時間的ダイナミクスとリカレントニューラルネットワークの計算力学の類似性を構築し,高調波駆動結晶のための勾配最適化フレームワークを開発する。
本研究は, メタマテリアルの内在的設計空間を大きく拡張するグラデーションに基づく最適化手法であることを示す。
- 参考スコア(独自算出の注目度): 0.22499166814992436
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: There is growing interest in engineering unconventional computing devices that leverage the intrinsic dynamics of physical substrates to perform fast and energy-efficient computations. Granular metamaterials are one such substrate that has emerged as a promising platform for building wave-based information processing devices with the potential to integrate sensing, actuation, and computation. Their high-dimensional and nonlinear dynamics result in nontrivial and sometimes counter-intuitive wave responses that can be shaped by the material properties, geometry, and configuration of individual grains. Such highly tunable rich dynamics can be utilized for mechanical computing in special-purpose applications. However, there are currently no general frameworks for the inverse design of large-scale granular materials. Here, we build upon the similarity between the spatiotemporal dynamics of wave propagation in material and the computational dynamics of Recurrent Neural Networks to develop a gradient-based optimization framework for harmonically driven granular crystals. We showcase how our framework can be utilized to design basic logic gates where mechanical vibrations carry the information at predetermined frequencies. We compare our design methodology with classic gradient-free methods and find that our approach discovers higher-performing configurations with less computational effort. Our findings show that a gradient-based optimization method can greatly expand the design space of metamaterials and provide the opportunity to systematically traverse the parameter space to find materials with the desired functionalities.
- Abstract(参考訳): 物理基板の本質的なダイナミクスを利用して高速でエネルギー効率の高い計算を行う工学的非伝統的な計算装置への関心が高まっている。
グラニュラーメタマテリアルは、センシング、アクティベーション、計算を統合する可能性を持つ波状情報処理デバイスを構築するための有望なプラットフォームとして登場した。
それらの高次元および非線形力学は、個々の粒子の材料特性、幾何学、配置によって形作ることができる非自明で時に反直観的な波動応答をもたらす。
このような高度に調整可能なリッチダイナミクスは、特殊用途の機械コンピューティングに利用することができる。
しかし、現在、大規模な粒状材料の逆設計のための一般的な枠組みは存在しない。
本稿では,物質中の波動伝播の時空間的ダイナミクスとリカレントニューラルネットワークの計算力学との類似性を構築し,高調波駆動グラニュラル結晶の勾配に基づく最適化フレームワークを開発する。
本稿では,機械振動が所定の周波数で情報を伝達する基本論理ゲートの設計に,我々のフレームワークをどのように利用できるかを紹介する。
設計手法を古典的な勾配のない手法と比較し,計算労力の少ない高性能な構成を発見する。
提案手法は, メタマテリアルの設計空間を大幅に拡張し, パラメータ空間を体系的に横切ることで, 所望の機能を持つ材料を見つけることができることを示す。
関連論文リスト
- Phononic materials with effectively scale-separated hierarchical features using interpretable machine learning [57.91994916297646]
構造的階層的な音波材料は、複数の周波数範囲にわたるエラストダイナミック波と振動の有望なチューニング性を引き起こしている。
本稿では、各長さスケールの特徴が対象周波数範囲内の帯域ギャップをもたらす階層単位セルを求める。
提案手法は,階層型設計空間における新しい領域の探索を柔軟かつ効率的に行う手法である。
論文 参考訳(メタデータ) (2024-08-15T21:35:06Z) - Higher-order topological kernels via quantum computation [68.8204255655161]
トポロジカルデータ分析(TDA)は、複雑なデータから意味のある洞察を抽出する強力なツールとして登場した。
本稿では,ベッチ曲線の次数増加に基づくBettiカーネルの量子的定義法を提案する。
論文 参考訳(メタデータ) (2023-07-14T14:48:52Z) - Optimization of a Hydrodynamic Computational Reservoir through Evolution [58.720142291102135]
我々は,スタートアップが開発中の流体力学系のモデルと,計算貯水池としてインターフェースする。
我々は、進化探索アルゴリズムを用いて、読み出し時間と入力を波の振幅や周波数にどのようにマッピングするかを最適化した。
この貯水池システムに進化的手法を適用することで、手作業パラメータを用いた実装と比較して、XNORタスクの分離性が大幅に向上した。
論文 参考訳(メタデータ) (2023-04-20T19:15:02Z) - PAC-NeRF: Physics Augmented Continuum Neural Radiance Fields for
Geometry-Agnostic System Identification [64.61198351207752]
ビデオからのシステム同定(オブジェクトの物理的パラメータを推定する)への既存のアプローチは、既知のオブジェクトジオメトリを仮定する。
本研究では,オブジェクトの形状やトポロジを仮定することなく,多視点ビデオの集合から物理系を特徴付けるパラメータを同定することを目的とする。
マルチビュービデオから高ダイナミックな物体の未知の幾何学的パラメータと物理的パラメータを推定するために,Physics Augmented Continuum Neural Radiance Fields (PAC-NeRF)を提案する。
論文 参考訳(メタデータ) (2023-03-09T18:59:50Z) - Physics-Constrained Neural Network for Design and Feature-Based
Optimization of Weave Architectures [0.6144680854063939]
本稿では,新しい物理制約ニューラルネットワーク(PCNN)を提案する。
提案したPCNNは,提案した基準モデルよりも高い精度で,所望の弾性率の織り込みを効果的に予測できることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:16:45Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - Learning the nonlinear dynamics of soft mechanical metamaterials with
graph networks [3.609538870261841]
ソフトメカニカルメタマテリアルの力学を研究する機械学習手法を提案する。
提案手法は直接数値シミュレーションと比較して計算コストを大幅に削減することができる。
論文 参考訳(メタデータ) (2022-02-24T00:20:28Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
我々は,材料単位セルのパターンを見つけるための,解釈可能な多分解能機械学習フレームワークを開発した。
具体的には、形状周波数特徴と単位セルテンプレートと呼ばれるメタマテリアルの2つの新しい解釈可能な表現を提案する。
論文 参考訳(メタデータ) (2021-11-10T21:19:02Z) - Gradient-Based Training and Pruning of Radial Basis Function Networks
with an Application in Materials Physics [0.24792948967354234]
本稿では,高速かつスケーラブルなオープンソース実装による放射状基底関数ネットワークのトレーニング手法を提案する。
連立データと連立データのモデル解析のための新しいクローズドフォーム最適化基準を導出する。
論文 参考訳(メタデータ) (2020-04-06T11:32:37Z) - Machine Learning Enabled Discovery of Application Dependent Design
Principles for Two-dimensional Materials [1.1470070927586016]
我々は熱力学、機械的、電子的特性を予測するためにモデルのアンサンブルを訓練する。
ほぼ2つの非結合なアプリケーションに対して,45,000近い構造体をスクリーニングする。
有機-無機ペロブスカイトと鉛とスズとのハイブリッドが太陽電池の応用に好適であることが判明した。
論文 参考訳(メタデータ) (2020-03-19T23:13:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。