Iterative Refinement Strategy for Automated Data Labeling: Facial Landmark Diagnosis in Medical Imaging
- URL: http://arxiv.org/abs/2404.05348v1
- Date: Mon, 8 Apr 2024 09:33:40 GMT
- Title: Iterative Refinement Strategy for Automated Data Labeling: Facial Landmark Diagnosis in Medical Imaging
- Authors: Yu-Hsi Chen,
- Abstract summary: This paper presents iterative refinement strategies for automated data labeling in facial landmark diagnosis.
Our approach iteratively refines initial labels, reducing reliance on manual intervention while improving label quality.
Our results highlight the importance of iterative refinement in automated data labeling to enhance the capabilities of deep learning systems in medical imaging applications.
- Score: 0.03464344220266879
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated data labeling techniques are crucial for accelerating the development of deep learning models, particularly in complex medical imaging applications. However, ensuring accuracy and efficiency remains challenging. This paper presents iterative refinement strategies for automated data labeling in facial landmark diagnosis to enhance accuracy and efficiency for deep learning models in medical applications, including dermatology, plastic surgery, and ophthalmology. Leveraging feedback mechanisms and advanced algorithms, our approach iteratively refines initial labels, reducing reliance on manual intervention while improving label quality. Through empirical evaluation and case studies, we demonstrate the effectiveness of our proposed strategies in deep learning tasks across medical imaging domains. Our results highlight the importance of iterative refinement in automated data labeling to enhance the capabilities of deep learning systems in medical imaging applications.
Related papers
- Prompt Mechanisms in Medical Imaging: A Comprehensive Survey [18.072753363565322]
Deep learning offers transformative potential in medical imaging.<n>Yet its clinical adoption is frequently hampered by challenges such as data scarcity, distribution shifts, and the need for robust task generalization.<n>Prompt-based methodologies have emerged as a pivotal strategy to guide deep learning models.
arXiv Detail & Related papers (2025-06-28T03:06:25Z) - Deep Learning for Ophthalmology: The State-of-the-Art and Future Trends [7.893548922956548]
The emergence of artificial intelligence (AI) has marked a new era in the realm of ophthalmology.
This review explores the cutting-edge applications of deep learning (DL) across a range of ocular conditions.
arXiv Detail & Related papers (2025-01-07T18:53:14Z) - Efficient MedSAMs: Segment Anything in Medical Images on Laptop [69.28565867103542]
We organized the first international competition dedicated to promptable medical image segmentation.
The top teams developed lightweight segmentation foundation models and implemented an efficient inference pipeline.
The best-performing algorithms have been incorporated into the open-source software with a user-friendly interface to facilitate clinical adoption.
arXiv Detail & Related papers (2024-12-20T17:33:35Z) - Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
This study focuses on the clinical evaluation of medical Synthetic Data Generation using Artificial Intelligence (AI) models.
The paper contributes by a) presenting a protocol for the systematic evaluation of synthetic images by medical experts and b) applying it to assess TIDE-II, a novel variational autoencoder-based model for high-resolution WCE image synthesis.
The results show that TIDE-II generates clinically relevant WCE images, helping to address data scarcity and enhance diagnostic tools.
arXiv Detail & Related papers (2024-10-31T19:48:50Z) - Automated Retinal Image Analysis and Medical Report Generation through Deep Learning [3.4447129363520337]
The increasing prevalence of retinal diseases poses a significant challenge to the healthcare system.
Traditional methods of generating medical reports from retinal images rely on manual interpretation.
This thesis investigates the potential of Artificial Intelligence to automate medical report generation for retinal images.
arXiv Detail & Related papers (2024-08-14T07:47:25Z) - Leveraging Semi-Supervised Graph Learning for Enhanced Diabetic
Retinopathy Detection [0.0]
Diabetic Retinopathy (DR) is a significant cause of blindness globally, highlighting the urgent need for early detection and effective treatment.
Recent advancements in Machine Learning (ML) techniques have shown promise in DR detection, but the availability of labeled data often limits their performance.
This research proposes a novel Semi-Supervised Graph Learning SSGL algorithm tailored for DR detection.
arXiv Detail & Related papers (2023-09-02T04:42:08Z) - Deep Learning and Computer Vision for Glaucoma Detection: A Review [0.8379286663107844]
Glaucoma is the leading cause of irreversible blindness worldwide.
Recent advances in computer vision and deep learning have demonstrated the potential for automated assessment.
We survey recent studies on AI-based glaucoma diagnosis using fundus, optical coherence tomography, and visual field images.
arXiv Detail & Related papers (2023-07-31T09:49:51Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - An Evaluation of Lightweight Deep Learning Techniques in Medical Imaging
for High Precision COVID-19 Diagnostics [0.0]
Decision support systems relax the challenges inherent to the physical examination of images.
Most deep learning algorithms utilised approaches are not amenable to implementation on resource-constrained devices.
This paper presents the development and evaluation of the performance of lightweight deep learning technique for the detection of COVID-19 using the MobileNetV2 model.
arXiv Detail & Related papers (2023-05-30T13:14:03Z) - Label-Efficient Deep Learning in Medical Image Analysis: Challenges and Future Directions [9.789815598574737]
Label-efficient deep learning methods have emerged to improve model performance under limited supervision.<n>These methods are categorized into four labeling paradigms: no label, insufficient label, inexact label, and label refinement.<n>We identify current challenges and future directions to facilitate the translation of label-efficient learning from research promise to everyday clinical care.
arXiv Detail & Related papers (2023-03-22T11:51:49Z) - Morphology-Aware Interactive Keypoint Estimation [32.52024944963992]
Diagnosis based on medical images often involves manual annotation of anatomical keypoints.
We propose a novel deep neural network that automatically detects and refines the anatomical keypoints through a user-interactive system.
arXiv Detail & Related papers (2022-09-15T09:27:14Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.