論文の概要: Quantum Optimization Methods for Satellite Mission Planning
- arxiv url: http://arxiv.org/abs/2404.05516v1
- Date: Mon, 8 Apr 2024 13:36:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 14:15:19.834759
- Title: Quantum Optimization Methods for Satellite Mission Planning
- Title(参考訳): 衛星計画のための量子最適化手法
- Authors: Antón Makarov, Carlos Pérez-Herradón, Giacomo Franceschetto, Márcio M. Taddei, Eneko Osaba, Paloma del Barrio, Esther Villar-Rodriguez, Izaskun Oregi,
- Abstract要約: 軌道上の衛星の増大は、それらを効率的に運用する必要性を浮き彫りにしている。
現在の古典的アルゴリズムは、大域的な最適化を見つけられなかったり、実行するのに時間がかかりすぎたりすることが多い。
ここでは、量子コンピューティングの観点からこの問題にアプローチし、有望な代替手段を提供する。
- 参考スコア(独自算出の注目度): 0.3252295747842729
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Satellite mission planning for Earth observation satellites is a combinatorial optimization problem that consists of selecting the optimal subset of imaging requests, subject to constraints, to be fulfilled during an orbit pass of a satellite. The ever-growing amount of satellites in orbit underscores the need to operate them efficiently, which requires solving many instances of the problem in short periods of time. However, current classical algorithms often fail to find the global optimum or take too long to execute. Here, we approach the problem from a quantum computing point of view, which offers a promising alternative that could lead to significant improvements in solution quality or execution speed in the future. To this end, we study a planning problem with a variety of intricate constraints and discuss methods to encode them for quantum computers. Additionally, we experimentally assess the performance of quantum annealing and the quantum approximate optimization algorithm on a realistic and diverse dataset. Our results identify key aspects like graph connectivity and constraint structure that influence the performance of the methods. We explore the limits of today's quantum algorithms and hardware, providing bounds on the problems that can be currently solved successfully and showing how the solution degrades as the complexity grows. This work aims to serve as a baseline for further research in the field and establish realistic expectations on current quantum optimization capabilities.
- Abstract(参考訳): 地球観測衛星の衛星ミッション計画は、衛星の軌道通過中に達成される画像要求の最適なサブセットを選択することで構成される組合せ最適化問題である。
軌道上の衛星の増大は、効率的に運用する必要性を浮き彫りにしており、短時間で多くの問題を解く必要がある。
しかし、現在の古典的アルゴリズムは、大域的な最適化を見つけられなかったり、実行するのに時間がかかりすぎたりすることが多い。
ここでは、量子コンピューティングの観点からこの問題にアプローチし、将来ソリューションの品質や実行速度を大幅に向上させる有望な代替手段を提供する。
そこで本研究では,様々な複雑な制約を持つ計画問題について検討し,それらを量子コンピュータにエンコードする方法について議論する。
さらに,現実的で多様なデータセット上での量子アニールと量子近似最適化アルゴリズムの性能を実験的に評価した。
この結果から,グラフ接続性や制約構造などの重要な側面を同定し,その有効性を検証した。
我々は、今日の量子アルゴリズムとハードウェアの限界を探求し、現在解決可能な問題の限界を提供し、複雑さが増大するにつれてソリューションがいかに劣化するかを示す。
この研究は、この分野におけるさらなる研究のベースラインとして機能し、現在の量子最適化能力に対する現実的な期待を確立することを目的としている。
関連論文リスト
- Quantum Algorithms for Drone Mission Planning [0.0]
ミッションプランニングはしばしば、一連のミッション目標を達成するためにISR(Intelligence, Surveillance and Reconnaissance)資産の使用を最適化する。
このような解を見つけることはNP-Hard問題であり、古典的なコンピュータでは効率的に解けないことが多い。
我々は、現在の古典的手法に対してスピードアップを提供する可能性のある、短期量子アルゴリズムについて検討する。
論文 参考訳(メタデータ) (2024-09-27T10:58:25Z) - A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
衛星データ中継ミッションの送信効率の低さは、現在システムの構築を制約している問題となっている。
本研究では,タスク間の状態特性を考慮した距離類似性に基づく遺伝的最適化アルゴリズム(DSGA)を提案し,タスク間の類似性を決定するための重み付きユークリッド距離法を提案する。
論文 参考訳(メタデータ) (2024-08-29T06:57:45Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Exploring the topological sector optimization on quantum computers [5.458469081464264]
トポロジカルセクター最適化(TSO)問題は、量子多体物理学コミュニティにおいて特に関心を集めている。
TSO問題の最適化の難しさは、ギャップレス性に限らず、トポロジカル性にも起因していることを示す。
TSO問題を解決するために、量子コンピュータ上で実現可能な量子想像時間進化(QITE)を利用する。
論文 参考訳(メタデータ) (2023-10-06T14:51:07Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
期待されている量子コンピュータの応用は、科学と産業にまたがる。
本稿では,量子アルゴリズムの応用分野について検討する。
私たちは、各領域における課題と機会を"エンドツーエンド"な方法で概説します。
論文 参考訳(メタデータ) (2023-10-04T17:53:55Z) - Multi-Objective Optimization and Network Routing with Near-Term Quantum
Computers [0.2150989251218736]
我々は,多目的最適化問題を解くために,近距離量子コンピュータを応用できる手法を開発した。
量子近似最適化アルゴリズム(QAOA)に基づく実装に焦点を当てる。
論文 参考訳(メタデータ) (2023-08-16T09:22:01Z) - Quantum algorithms applied to satellite mission planning for Earth
observation [0.0]
本稿では,衛星計画問題の解法として,量子アルゴリズムのセットを紹介する。
この問題は、実際のデータセットで完了した高優先度タスクの数を最大化するものとして定式化されている。
ハイブリッド化量子強化学習エージェントは、高優先度タスクに対して98.5%の完了率を達成することができる。
論文 参考訳(メタデータ) (2023-02-14T16:49:25Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
我々は、様々なレベルの接続性を持つハードウェアアーキテクチャのための最適化回路により、期待されるリソース要求のスケーリングを定量化する。
問題の大きさと問題グラフの次数で指数関数的に増大する。
これらの問題は、ハードウェア接続性の向上や、より少ない回路層で高い性能を達成するQAOAの変更によって緩和される可能性がある。
論文 参考訳(メタデータ) (2022-01-06T21:02:30Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - Image Acquisition Planning for Earth Observation Satellites with a
Quantum Annealer [0.35232085374661287]
我々は、地球観測ミッションの計画において、最先端の古典的最適化手法をD-Wave 2000Q量子アニールと比較した。
量子アニールラーの解の質は、小さな問題の場合で用いられる方法に匹敵するが、量子アニールラーの精度の限界により急速に低下する。
論文 参考訳(メタデータ) (2020-06-17T08:55:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。