論文の概要: AI-Enabled System for Efficient and Effective Cyber Incident Detection and Response in Cloud Environments
- arxiv url: http://arxiv.org/abs/2404.05602v3
- Date: Fri, 01 Nov 2024 20:51:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 21:25:37.507575
- Title: AI-Enabled System for Efficient and Effective Cyber Incident Detection and Response in Cloud Environments
- Title(参考訳): クラウド環境における高効率かつ効果的なサイバーインシデント検出・応答のためのAI対応システム
- Authors: Mohammed Ashfaaq M. Farzaan, Mohamed Chahine Ghanem, Ayman El-Hajjar, Deepthi N. Ratnayake,
- Abstract要約: クラウド環境における高度なサイバー脅威の増大は、戦略のパラダイムシフトを必要とする。
本研究は,AIとMLの応用を探求し,クラウド環境に対するAIを活用したサイバーインシデント応答システムを提案する。
この結果はランダムフォレストモデルの有効性を強調し、ネットワークトラフィックの精度90%、マルウェア分析デュアルモデルアプリケーションの96%を達成した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The escalating sophistication and volume of cyber threats in cloud environments necessitate a paradigm shift in strategies. Recognising the need for an automated and precise response to cyber threats, this research explores the application of AI and ML and proposes an AI-powered cyber incident response system for cloud environments. This system, encompassing Network Traffic Classification, Web Intrusion Detection, and post-incident Malware Analysis (built as a Flask application), achieves seamless integration across platforms like Google Cloud and Microsoft Azure. The findings from this research highlight the effectiveness of the Random Forest model, achieving an accuracy of 90% for the Network Traffic Classifier and 96% for the Malware Analysis Dual Model application. Our research highlights the strengths of AI-powered cyber security. The Random Forest model excels at classifying cyber threats, offering an efficient and robust solution. Deep learning models significantly improve accuracy, and their resource demands can be managed using cloud-based TPUs and GPUs. Cloud environments themselves provide a perfect platform for hosting these AI/ML systems, while container technology ensures both efficiency and scalability. These findings demonstrate the contribution of the AI-led system in guaranteeing a robust and scalable cyber incident response solution in the cloud.
- Abstract(参考訳): クラウド環境における高度なサイバー脅威の増大は、戦略のパラダイムシフトを必要とする。
サイバー脅威に対する自動的かつ正確な対応の必要性を認識した本研究では,AIとMLの適用について検討し,クラウド環境に対するAIを活用したサイバーインシデント応答システムを提案する。
このシステムは、ネットワークトラフィックの分類、Web侵入検出、事故後のマルウェア分析(Fraskアプリケーションとして構築)を含むもので、Google CloudやMicrosoft Azureのようなプラットフォーム間でシームレスな統合を実現する。
本研究の結果はランダムフォレストモデルの有効性を強調し,ネットワークトラフィック分類器では90%,Malware Analysis Dual Modelでは96%の精度を達成した。
私たちの研究は、AIによるサイバーセキュリティの強みを強調しています。
Random Forestモデルは、サイバー脅威の分類に優れ、効率的で堅牢なソリューションを提供する。
ディープラーニングモデルは精度を大幅に向上し、そのリソース要求はクラウドベースのTPUとGPUを使用して管理できる。
クラウド環境自体は、これらのAI/MLシステムをホストするための完璧なプラットフォームを提供し、コンテナ技術は効率性とスケーラビリティの両方を保証する。
これらの結果は、クラウドにおける堅牢でスケーラブルなサイバーインシデント対応ソリューションを保証する上で、AI主導のシステムが貢献していることを示している。
関連論文リスト
- Transforming the Hybrid Cloud for Emerging AI Workloads [81.15269563290326]
このホワイトペーパーでは、AIワークロードの複雑さの増大に対応するために、ハイブリッドクラウドシステムを変革することを想定している。
提案したフレームワークは、エネルギー効率、性能、コスト効率において重要な課題に対処する。
この共同イニシアチブは、ハイブリッドクラウドをセキュアで効率的で持続可能なプラットフォームとして確立することを目的としています。
論文 参考訳(メタデータ) (2024-11-20T11:57:43Z) - Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [70.93622520400385]
本稿では,VLAに基づくロボットシステムのロバスト性を体系的に評価する。
本研究では,ロボット行動の不安定化に空間的基盤を活用する,標的のない位置認識型攻撃目標を提案する。
また、カメラの視野内に小さなカラフルなパッチを配置し、デジタル環境と物理環境の両方で効果的に攻撃を実行する逆パッチ生成アプローチを設計する。
論文 参考訳(メタデータ) (2024-11-18T01:52:20Z) - Countering Autonomous Cyber Threats [40.00865970939829]
ファンデーションモデルは、サイバードメイン内で広く、特に二元的関心事を提示します。
近年の研究では、これらの先進的なモデルが攻撃的なサイバースペース操作を通知または独立に実行する可能性を示している。
この研究は、孤立したネットワークでマシンを妥協する能力について、最先端のいくつかのFMを評価し、そのようなAIによる攻撃を倒す防御メカニズムを調査する。
論文 参考訳(メタデータ) (2024-10-23T22:46:44Z) - Feature Selection using the concept of Peafowl Mating in IDS [2.184775414778289]
クラウドコンピューティングはインフラストラクチャベース、プラットフォームベース、ソフトウェアベースのサービスを提供します。
この技術の人気は、パフォーマンス、高いレベルのコンピューティング能力、低コストのサービス、スケーラビリティ、可用性、柔軟性にある。
クラウド環境におけるデータの入手性とオープン性は、サイバー攻撃の世界に対して脆弱である。
侵入検知システムを用いて攻撃を検知し、情報セキュリティを確保する。
論文 参考訳(メタデータ) (2024-02-03T06:04:49Z) - Physics-Informed Convolutional Autoencoder for Cyber Anomaly Detection
in Power Distribution Grids [0.0]
本稿では,物理インフォームド・コンボリューション・オートエンコーダ(PIConvAE)を提案する。
提案モデルは、Kirchhoffの法則を適用して、ニューラルネットワークの損失関数に物理原理を統合する。
論文 参考訳(メタデータ) (2023-12-08T00:05:13Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
我々はランダムフォレストとリカレントニューラルネットワークアーキテクチャに基づく2つの軽量ドライバ認証システムを開発した。
我々は,SMARTCANとGANCANという2つの新しいエスケープアタックを開発することで,これらのシステムに対する攻撃を最初に提案する。
コントリビューションを通じて、これらのシステムを安全に採用する実践者を支援し、車の盗難を軽減し、ドライバーのセキュリティを高める。
論文 参考訳(メタデータ) (2023-06-09T14:33:26Z) - Scalable, Distributed AI Frameworks: Leveraging Cloud Computing for
Enhanced Deep Learning Performance and Efficiency [0.0]
近年、人工知能(AI)とクラウドコンピューティングの統合は、AIアプリケーションの計算要求の増加に対処するための有望な道として現れている。
本稿では,クラウドコンピューティングを活用したスケーラブルな分散AIフレームワークの総合的研究を行い,ディープラーニングの性能向上と効率化について述べる。
論文 参考訳(メタデータ) (2023-04-26T15:38:00Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
ワークショップは、サイバーセキュリティの問題へのAIの適用に焦点を当てる。
サイバーシステムは大量のデータを生成し、これを効果的に活用することは人間の能力を超えます。
論文 参考訳(メタデータ) (2022-02-28T18:27:41Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
ネットワーク分類器に対するブラックボックス攻撃について検討する。
我々は、アタッカー・ディフェンダーの固定点がそれ自体、複雑な位相遷移を持つ一般サムゲームであると主張する。
攻撃防御力学の研究には連続的な学習手法が必要であることを示す。
論文 参考訳(メタデータ) (2021-11-23T23:42:16Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
本研究では,エージェントの訓練に深層強化学習を用いることで,悪意あるアクターの潜在的な脅威を実証する。
本稿では,最先端の強化学習アルゴリズムを用いて,局所的な特権エスカレーションを行うエージェントを提案する。
我々のエージェントは、実際の攻撃センサーデータを生成し、侵入検知システムの訓練と評価に利用できる。
論文 参考訳(メタデータ) (2021-10-04T12:20:46Z) - Artificial Intelligence and Machine Learning in 5G Network Security:
Opportunities, advantages, and future research trends [5.431496585727341]
5Gネットワークの最大のセールスポイントは、データレートとスピードの向上だ。
5Gネットワークの最大のセールスポイントはデータレートと速度の向上であり、幅広い脅威に対処することは困難である。
本稿では,5GネットワークセキュリティのためのAIおよびML駆動アプリケーションについて述べる。
論文 参考訳(メタデータ) (2020-07-09T01:02:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。