From Barlow Twins to Triplet Training: Differentiating Dementia with Limited Data
- URL: http://arxiv.org/abs/2404.06253v1
- Date: Tue, 9 Apr 2024 12:25:06 GMT
- Title: From Barlow Twins to Triplet Training: Differentiating Dementia with Limited Data
- Authors: Yitong Li, Tom Nuno Wolf, Sebastian Pölsterl, Igor Yakushev, Dennis M. Hedderich, Christian Wachinger,
- Abstract summary: We propose Triplet Training for differential diagnosis with limited target data.
It consists of three key stages: (i) self-supervised pre-training on unlabeled data with Barlow Twins, (ii) self-distillation on task-related data, and (iii) fine-tuning on the target dataset.
Our approach significantly outperforms traditional training strategies, achieving a balanced accuracy of 75.6%.
- Score: 8.954593873296284
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differential diagnosis of dementia is challenging due to overlapping symptoms, with structural magnetic resonance imaging (MRI) being the primary method for diagnosis. Despite the clinical value of computer-aided differential diagnosis, research has been limited, mainly due to the absence of public datasets that contain diverse types of dementia. This leaves researchers with small in-house datasets that are insufficient for training deep neural networks (DNNs). Self-supervised learning shows promise for utilizing unlabeled MRI scans in training, but small batch sizes for volumetric brain scans make its application challenging. To address these issues, we propose Triplet Training for differential diagnosis with limited target data. It consists of three key stages: (i) self-supervised pre-training on unlabeled data with Barlow Twins, (ii) self-distillation on task-related data, and (iii) fine-tuning on the target dataset. Our approach significantly outperforms traditional training strategies, achieving a balanced accuracy of 75.6%. We further provide insights into the training process by visualizing changes in the latent space after each step. Finally, we validate the robustness of Triplet Training in terms of its individual components in a comprehensive ablation study. Our code is available at https://github.com/ai-med/TripletTraining.
Related papers
- Self-Supervised Pretext Tasks for Alzheimer's Disease Classification using 3D Convolutional Neural Networks on Large-Scale Synthetic Neuroimaging Dataset [11.173478552040441]
Alzheimer's Disease (AD) induces both localised and widespread neural degenerative changes throughout the brain.
In this work, we evaluated several unsupervised methods to train a feature extractor for downstream AD vs. CN classification.
arXiv Detail & Related papers (2024-06-20T11:26:32Z) - Diagnosing Alzheimer's Disease using Early-Late Multimodal Data Fusion
with Jacobian Maps [1.5501208213584152]
Alzheimer's disease (AD) is a prevalent and debilitating neurodegenerative disorder impacting a large aging population.
We propose an efficient early-late fusion (ELF) approach, which leverages a convolutional neural network for automated feature extraction and random forests.
To tackle the challenge of detecting subtle changes in brain volume, we transform images into the Jacobian domain (JD)
arXiv Detail & Related papers (2023-10-25T19:02:57Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - SSL^2: Self-Supervised Learning meets Semi-Supervised Learning: Multiple
Sclerosis Segmentation in 7T-MRI from large-scale 3T-MRI [10.28453502633171]
We propose a training framework, SSL2 (self-supervised-semi-supervised), for multi-modality MS lesion segmentation with limited supervision.
We adopt self-supervised learning to leverage the knowledge from large public 3T datasets to tackle the limitations of a small 7T target dataset.
The effectiveness of self-supervised and semi-supervised training strategies is evaluated in our in-house 7T MRI dataset.
arXiv Detail & Related papers (2023-03-09T04:20:16Z) - Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with
impured training data [53.122045119395594]
We study how unhealthy samples within the training data affect anomaly detection performance for brain MRI-scans.
We evaluate a method to identify falsely labeled samples directly during training based on the reconstruction error of the AE.
arXiv Detail & Related papers (2022-04-12T13:05:18Z) - Outlier-based Autism Detection using Longitudinal Structural MRI [6.311381904410801]
This paper proposes structural Magnetic Resonance Imaging (sMRI)-based Autism Spectrum Disorder diagnosis via an outlier detection approach.
Generative Adversarial Network (GAN) is trained exclusively with sMRI scans of healthy subjects.
Experiments reveal that our ASD detection framework performs comparably with the state-of-the-art with far fewer training data.
arXiv Detail & Related papers (2022-02-21T04:37:25Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
We argue that incorporating an external CXR dataset leads to imperfect training data, which raises the challenges.
We formulate the multi-label disease classification problem as weighted independent binary tasks according to the categories.
Our framework simultaneously models and tackles the domain and label discrepancies, enabling superior knowledge mining ability.
arXiv Detail & Related papers (2020-06-06T06:48:40Z) - Ensemble Deep Learning on Large, Mixed-Site fMRI Datasets in Autism and
Other Tasks [0.1160208922584163]
We train a convolutional neural network (CNN) with the largest multi-source, functional MRI (fMRI) connectomic dataset ever compiled.
Our study finds that deep learning models that distinguish ASD from TD controls focus broadly on temporal and cerebellar connections.
arXiv Detail & Related papers (2020-02-14T17:28:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.