Enhancing Decision Analysis with a Large Language Model: pyDecision a Comprehensive Library of MCDA Methods in Python
- URL: http://arxiv.org/abs/2404.06370v1
- Date: Tue, 9 Apr 2024 15:06:25 GMT
- Title: Enhancing Decision Analysis with a Large Language Model: pyDecision a Comprehensive Library of MCDA Methods in Python
- Authors: Valdecy Pereira, Marcio Pereira Basilio, Carlos Henrique Tarjano SantosCarlos Henrique Tarjano Santos,
- Abstract summary: pyDecision library, implemented in Python, provides a comprehensive collection of multicriteria decision analysis methods.
pyDecision has integrated ChatGPT, an advanced Large Language Model, where decision-makers can use ChatGPT to discuss and compare the outcomes of different methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Purpose: Multicriteria decision analysis (MCDA) has become increasingly essential for decision-making in complex environments. In response to this need, the pyDecision library, implemented in Python and available at https://bit.ly/3tLFGtH, has been developed to provide a comprehensive and accessible collection of MCDA methods. Methods: The pyDecision offers 70 MCDA methods, including AHP, TOPSIS, and the PROMETHEE and ELECTRE families. Beyond offering a vast range of techniques, the library provides visualization tools for more intuitive results interpretation. In addition to these features, pyDecision has integrated ChatGPT, an advanced Large Language Model, where decision-makers can use ChatGPT to discuss and compare the outcomes of different methods, providing a more interactive and intuitive understanding of the solutions. Findings: Large Language Models are undeniably potent but can sometimes be a double-edged sword. Its answers may be misleading without rigorous verification of its outputs, especially for researchers lacking deep domain expertise. It's imperative to approach its insights with a discerning eye and a solid foundation in the relevant field. Originality: With the integration of MCDA methods and ChatGPT, pyDecision is a significant contribution to the scientific community, as it is an invaluable resource for researchers, practitioners, and decision-makers navigating complex decision-making problems and seeking the most appropriate solutions based on MCDA methods.
Related papers
- Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [50.485788083202124]
Reinforcement Learning (RL) plays a crucial role in aligning large language models with human preferences and improving their ability to perform complex tasks.
We introduce Direct Q-function Optimization (DQO), which formulates the response generation process as a Markov Decision Process (MDP) and utilizes the soft actor-critic (SAC) framework to optimize a Q-function directly parameterized by the language model.
Experimental results on two math problem-solving datasets, GSM8K and MATH, demonstrate that DQO outperforms previous methods, establishing it as a promising offline reinforcement learning approach for aligning language models.
arXiv Detail & Related papers (2024-10-11T23:29:20Z) - Multi-step Inference over Unstructured Data [2.169874047093392]
High-stakes decision-making tasks in fields such as medical, legal and finance require a level of precision, comprehensiveness, and logical consistency.
We have developed a neuro-symbolic AI platform to tackle these problems.
The platform integrates fine-tuned LLMs for knowledge extraction and alignment with a robust symbolic reasoning engine.
arXiv Detail & Related papers (2024-06-26T00:00:45Z) - Large language models for crowd decision making based on prompt design strategies using ChatGPT: models, analysis and challenges [8.107295925954475]
Crowd Decision Making (CDM) is a methodology able to infer opinions and decisions from plain texts.
Large Language Models (LLMs) lead us to explore new scenarios of automatically understand written texts.
This paper analyzes the use of ChatGPT based on prompt design strategies to assist in CDM processes to extract opinions and make decisions.
arXiv Detail & Related papers (2024-03-22T19:21:44Z) - Bayesian Preference Elicitation with Language Models [82.58230273253939]
We introduce OPEN, a framework that uses BOED to guide the choice of informative questions and an LM to extract features.
In user studies, we find that OPEN outperforms existing LM- and BOED-based methods for preference elicitation.
arXiv Detail & Related papers (2024-03-08T18:57:52Z) - DeLLMa: Decision Making Under Uncertainty with Large Language Models [31.77731889916652]
DeLLMa is a framework designed to enhance decision-making accuracy in uncertain environments.
We show that DeLLMa can consistently enhance the decision-making performance of leading language models, and achieve up to a 40% increase in accuracy over competing methods.
arXiv Detail & Related papers (2024-02-04T08:11:45Z) - Enhancing Human-like Multi-Modal Reasoning: A New Challenging Dataset
and Comprehensive Framework [51.44863255495668]
Multimodal reasoning is a critical component in the pursuit of artificial intelligence systems that exhibit human-like intelligence.
We present Multi-Modal Reasoning(COCO-MMR) dataset, a novel dataset that encompasses an extensive collection of open-ended questions.
We propose innovative techniques, including multi-hop cross-modal attention and sentence-level contrastive learning, to enhance the image and text encoders.
arXiv Detail & Related papers (2023-07-24T08:58:25Z) - Explainable Data-Driven Optimization: From Context to Decision and Back
Again [76.84947521482631]
Data-driven optimization uses contextual information and machine learning algorithms to find solutions to decision problems with uncertain parameters.
We introduce a counterfactual explanation methodology tailored to explain solutions to data-driven problems.
We demonstrate our approach by explaining key problems in operations management such as inventory management and routing.
arXiv Detail & Related papers (2023-01-24T15:25:16Z) - On solving decision and risk management problems subject to uncertainty [91.3755431537592]
Uncertainty is a pervasive challenge in decision and risk management.
This paper develops a systematic understanding of such strategies, determine their range of application, and develop a framework to better employ them.
arXiv Detail & Related papers (2023-01-18T19:16:23Z) - Counterfactual Contextual Multi-Armed Bandit: a Real-World Application
to Diagnose Apple Diseases [1.7403133838762446]
Post-harvest diseases of apple are one of the major issues in the economical sector of apple production.
We developed DSSApple, a picture-based decision support system able to help users in the diagnosis of apple diseases.
arXiv Detail & Related papers (2021-02-08T14:11:10Z) - Big Data Analytics Applying the Fusion Approach of Multicriteria
Decision Making with Deep Learning Algorithms [0.0]
Multicriteria based decision making is one of the key issues to solve for various issues related to the alternative effects in big data analysis.
It tends to find a solution based on the latest machine learning techniques that include algorithms like decision making and deep learning mechanism based on multicriteria.
In essence, several fields, including business, agriculture, information technology, and computer science, use deep learning and multicriteria-based decision-making problems.
arXiv Detail & Related papers (2021-02-02T05:56:03Z) - Leveraging Expert Consistency to Improve Algorithmic Decision Support [62.61153549123407]
We explore the use of historical expert decisions as a rich source of information that can be combined with observed outcomes to narrow the construct gap.
We propose an influence function-based methodology to estimate expert consistency indirectly when each case in the data is assessed by a single expert.
Our empirical evaluation, using simulations in a clinical setting and real-world data from the child welfare domain, indicates that the proposed approach successfully narrows the construct gap.
arXiv Detail & Related papers (2021-01-24T05:40:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.