Large Language Models to the Rescue: Deadlock Resolution in Multi-Robot Systems
- URL: http://arxiv.org/abs/2404.06413v1
- Date: Tue, 9 Apr 2024 16:03:26 GMT
- Title: Large Language Models to the Rescue: Deadlock Resolution in Multi-Robot Systems
- Authors: Kunal Garg, Jacob Arkin, Songyuan Zhang, Nicholas Roy, Chuchu Fan,
- Abstract summary: This paper explores the possibility of using large language models for deadlock resolution.
We propose a hierarchical control framework where an LLM resolves deadlocks by assigning a leader and direction for the leader to move along.
A graph neural network based low-level distributed control policy executes the assigned plan.
- Score: 19.519786983038202
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-agent robotic systems are prone to deadlocks in an obstacle environment where the system can get stuck away from its desired location under a smooth low-level control policy. Without an external intervention, often in terms of a high-level command, it is not possible to guarantee that just a low-level control policy can resolve such deadlocks. Utilizing the generalizability and low data requirements of large language models (LLMs), this paper explores the possibility of using LLMs for deadlock resolution. We propose a hierarchical control framework where an LLM resolves deadlocks by assigning a leader and direction for the leader to move along. A graph neural network (GNN) based low-level distributed control policy executes the assigned plan. We systematically study various prompting techniques to improve LLM's performance in resolving deadlocks. In particular, as part of prompt engineering, we provide in-context examples for LLMs. We conducted extensive experiments on various multi-robot environments with up to 15 agents and 40 obstacles. Our results demonstrate that LLM-based high-level planners are effective in resolving deadlocks in MRS.
Related papers
- Benchmarking LLMs' Swarm intelligence [50.544186914115045]
Large Language Models (LLMs) show potential for complex reasoning, yet their capacity for emergent coordination in Multi-Agent Systems (MAS) remains largely unexplored.<n>We introduce SwarmBench, a novel benchmark designed to systematically evaluate tasks of LLMs acting as decentralized agents.<n>We propose metrics for coordination effectiveness and analyze emergent group dynamics.
arXiv Detail & Related papers (2025-05-07T12:32:01Z) - EMMOE: A Comprehensive Benchmark for Embodied Mobile Manipulation in Open Environments [11.97783742296183]
Embodied Mobile Manipulation in Open Environments is a benchmark that requires agents to interpret user instructions and execute long-horizon everyday tasks in continuous space.<n>Embodied Mobile Manipulation in Open Environments seamlessly integrates high-level and low-level embodied tasks into a unified framework, along with three new metrics for more diverse assessment.<n>We designmodel, a sophisticated agent system consists of LLM with Direct Preference Optimization (DPO), light weighted navigation and manipulation models, and multiple error detection mechanisms.
arXiv Detail & Related papers (2025-03-11T16:42:36Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.
However, they still struggle with problems requiring multi-step decision-making and environmental feedback.
We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Learning Efficient Flocking Control based on Gibbs Random Fields [8.715391538937707]
Multi-agent reinforcement learning framework built on Gibbs Random Fields (GRFs)
An action attention module is introduced to implicitly anticipate the motion intentions of neighboring robots.
Proposed framework enables learning an efficient distributed control policy for multi-robot systems in challenging environments with success rate around $99%$.
arXiv Detail & Related papers (2025-02-05T08:27:58Z) - Solving Finite-Horizon MDPs via Low-Rank Tensors [9.072279909866845]
We study the problem of learning optimal policies in finite-horizon Markov Decision Processes (MDPs)
In finite-horizon MDPs, the policies, and therefore the value functions (VFs) are not stationary.
We propose modeling the VFs of finite-horizon MDPs as low-rank tensors, enabling a scalable representation that renders the problem of learning optimal policies tractable.
arXiv Detail & Related papers (2025-01-17T23:10:50Z) - MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
Large Language Models (LLMs) have demonstrated remarkable planning abilities across various domains, including robotics manipulation and navigation.
We propose a novel multi-agent LLM framework that distributes high-level planning and low-level control code generation across specialized LLM agents.
We evaluate our approach on nine RLBench tasks, including long-horizon tasks, and demonstrate its ability to solve robotics manipulation in a zero-shot setting.
arXiv Detail & Related papers (2024-11-26T17:53:44Z) - ET-Plan-Bench: Embodied Task-level Planning Benchmark Towards Spatial-Temporal Cognition with Foundation Models [39.606908488885125]
ET-Plan-Bench is a benchmark for embodied task planning using Large Language Models (LLMs)
It features a controllable and diverse set of embodied tasks varying in different levels of difficulties and complexities.
Our benchmark distinguishes itself as a large-scale, quantifiable, highly automated, and fine-grained diagnostic framework.
arXiv Detail & Related papers (2024-10-02T19:56:38Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - SALMON: Self-Alignment with Instructable Reward Models [80.83323636730341]
This paper presents a novel approach, namely SALMON, to align base language models with minimal human supervision.
We develop an AI assistant named Dromedary-2 with only 6 exemplars for in-context learning and 31 human-defined principles.
arXiv Detail & Related papers (2023-10-09T17:56:53Z) - Layered controller synthesis for dynamic multi-agent systems [0.0]
We present a layered approach for multi-agent control problem, decomposed into three stages.
We use SWA-SMT solutions as the initial training dataset for our last stage, which aims at obtaining a neural network control policy.
arXiv Detail & Related papers (2023-07-13T13:56:27Z) - Fully Decentralized Model-based Policy Optimization for Networked
Systems [23.46407780093797]
This work aims to improve data efficiency of multi-agent control by model-based learning.
We consider networked systems where agents are cooperative and communicate only locally with their neighbors.
In our method, each agent learns a dynamic model to predict future states and broadcast their predictions by communication, and then the policies are trained under the model rollouts.
arXiv Detail & Related papers (2022-07-13T23:52:14Z) - Evaluating model-based planning and planner amortization for continuous
control [79.49319308600228]
We take a hybrid approach, combining model predictive control (MPC) with a learned model and model-free policy learning.
We find that well-tuned model-free agents are strong baselines even for high DoF control problems.
We show that it is possible to distil a model-based planner into a policy that amortizes the planning without any loss of performance.
arXiv Detail & Related papers (2021-10-07T12:00:40Z) - Modular Deep Reinforcement Learning for Continuous Motion Planning with
Temporal Logic [59.94347858883343]
This paper investigates the motion planning of autonomous dynamical systems modeled by Markov decision processes (MDP)
The novelty is to design an embedded product MDP (EP-MDP) between the LDGBA and the MDP.
The proposed LDGBA-based reward shaping and discounting schemes for the model-free reinforcement learning (RL) only depend on the EP-MDP states.
arXiv Detail & Related papers (2021-02-24T01:11:25Z) - Learning High-Level Policies for Model Predictive Control [54.00297896763184]
Model Predictive Control (MPC) provides robust solutions to robot control tasks.
We propose a self-supervised learning algorithm for learning a neural network high-level policy.
We show that our approach can handle situations that are difficult for standard MPC.
arXiv Detail & Related papers (2020-07-20T17:12:34Z) - From proprioception to long-horizon planning in novel environments: A
hierarchical RL model [4.44317046648898]
In this work, we introduce a simple, three-level hierarchical architecture that reflects different types of reasoning.
We apply our method to a series of navigation tasks in the Mujoco Ant environment.
arXiv Detail & Related papers (2020-06-11T17:19:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.