Event Grounded Criminal Court View Generation with Cooperative (Large) Language Models
- URL: http://arxiv.org/abs/2404.07001v3
- Date: Tue, 16 Apr 2024 06:34:31 GMT
- Title: Event Grounded Criminal Court View Generation with Cooperative (Large) Language Models
- Authors: Linan Yue, Qi Liu, Lili Zhao, Li Wang, Weibo Gao, Yanqing An,
- Abstract summary: We propose an Event Grounded Generation (EGG) method for criminal court view generation with cooperative (Large) Language Models.
We first design a LLMs-based extraction method that can extract events in case facts without massive annotated events.
Then, we incorporate the extracted events into court view generation by merging case facts and events.
- Score: 12.569076604769156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the development of legal intelligence, Criminal Court View Generation has attracted much attention as a crucial task of legal intelligence, which aims to generate concise and coherent texts that summarize case facts and provide explanations for verdicts. Existing researches explore the key information in case facts to yield the court views. Most of them employ a coarse-grained approach that partitions the facts into broad segments (e.g., verdict-related sentences) to make predictions. However, this approach fails to capture the complex details present in the case facts, such as various criminal elements and legal events. To this end, in this paper, we propose an Event Grounded Generation (EGG) method for criminal court view generation with cooperative (Large) Language Models, which introduces the fine-grained event information into the generation. Specifically, we first design a LLMs-based extraction method that can extract events in case facts without massive annotated events. Then, we incorporate the extracted events into court view generation by merging case facts and events. Besides, considering the computational burden posed by the use of LLMs in the extraction phase of EGG, we propose a LLMs-free EGG method that can eliminate the requirement for event extraction using LLMs in the inference phase. Extensive experimental results on a real-world dataset clearly validate the effectiveness of our proposed method.
Related papers
- A Law Reasoning Benchmark for LLM with Tree-Organized Structures including Factum Probandum, Evidence and Experiences [76.73731245899454]
We propose a transparent law reasoning schema enriched with hierarchical factum probandum, evidence, and implicit experience.
Inspired by this schema, we introduce the challenging task, which takes a textual case description and outputs a hierarchical structure justifying the final decision.
This benchmark paves the way for transparent and accountable AI-assisted law reasoning in the Intelligent Court''
arXiv Detail & Related papers (2025-03-02T10:26:54Z) - AnnoCaseLaw: A Richly-Annotated Dataset For Benchmarking Explainable Legal Judgment Prediction [56.797874973414636]
AnnoCaseLaw is a first-of-its-kind dataset of 471 meticulously annotated U.S. Appeals Court negligence cases.
Our dataset lays the groundwork for more human-aligned, explainable Legal Judgment Prediction models.
Results demonstrate that LJP remains a formidable task, with application of legal precedent proving particularly difficult.
arXiv Detail & Related papers (2025-02-28T19:14:48Z) - CoPERLex: Content Planning with Event-based Representations for Legal Case Summarization [1.3723120574076126]
Legal professionals often struggle with lengthy judgments and require efficient summarization for quick comprehension.
We propose our framework, CoPERLex, which operates in three stages: first, it performs content selection to identify crucial information from the judgment.
Second, the selected content is utilized to generate intermediate plans through event-centric representations modeled as Subject-VerbObjects.
Third, it generates coherent summaries on both the content and the structured plan.
arXiv Detail & Related papers (2025-01-23T22:03:45Z) - A Multi-Source Heterogeneous Knowledge Injected Prompt Learning Method for Legal Charge Prediction [3.52209555388364]
We propose a prompt learning framework-based method for modeling case descriptions.
We leverage multi-source external knowledge from a legal knowledge base, a conversational LLM, and legal articles.
Our method achieves state-of-the-art results on CAIL-2018, the largest legal charge prediction dataset.
arXiv Detail & Related papers (2024-08-05T04:53:17Z) - LawLLM: Law Large Language Model for the US Legal System [43.13850456765944]
We introduce the Law Large Language Model (LawLLM), a multi-task model specifically designed for the US legal domain.
LawLLM excels at Similar Case Retrieval (SCR), Precedent Case Recommendation (PCR), and Legal Judgment Prediction (LJP)
We propose customized data preprocessing techniques for each task that transform raw legal data into a trainable format.
arXiv Detail & Related papers (2024-07-27T21:51:30Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
We introduce DELTA, a discriminative model designed for legal case retrieval.
We leverage shallow decoders to create information bottlenecks, aiming to enhance the representation ability.
Our approach can outperform existing state-of-the-art methods in legal case retrieval.
arXiv Detail & Related papers (2024-03-27T10:40:14Z) - Leveraging Large Language Models for Relevance Judgments in Legal Case Retrieval [18.058942674792604]
We propose a novel few-shot workflow tailored to the relevant judgment of legal cases.
By comparing the relevance judgments of LLMs and human experts, we empirically show that we can obtain reliable relevance judgments.
arXiv Detail & Related papers (2024-03-27T09:46:56Z) - Low-Resource Court Judgment Summarization for Common Law Systems [32.13166048504629]
We present CLSum, the first dataset for summarizing multi-jurisdictional common law court judgment documents.
This is the first court judgment summarization work adopting large language models (LLMs) in data augmentation, summary generation, and evaluation.
arXiv Detail & Related papers (2024-03-07T12:47:42Z) - Leveraging Large Language Models for Learning Complex Legal Concepts through Storytelling [43.243889347008455]
We present a novel application of large language models (LLMs) in legal education to help non-experts learn intricate legal concepts through storytelling.
We introduce a new dataset LegalStories, which consists of 294 complex legal doctrines, each accompanied by a story and a set of multiple-choice questions.
We find that LLM-generated stories enhance comprehension of legal concepts and interest in law among non-native speakers compared to only definitions.
arXiv Detail & Related papers (2024-02-26T20:56:06Z) - MUSER: A Multi-View Similar Case Retrieval Dataset [65.36779942237357]
Similar case retrieval (SCR) is a representative legal AI application that plays a pivotal role in promoting judicial fairness.
Existing SCR datasets only focus on the fact description section when judging the similarity between cases.
We present M, a similar case retrieval dataset based on multi-view similarity measurement and comprehensive legal element with sentence-level legal element annotations.
arXiv Detail & Related papers (2023-10-24T08:17:11Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
Legal Judgment Prediction (LJP) has become an increasingly crucial task in Legal AI.
Precedents are the previous legal cases with similar facts, which are the basis for the judgment of the subsequent case in national legal systems.
Recent advances in deep learning have enabled a variety of techniques to be used to solve the LJP task.
arXiv Detail & Related papers (2023-10-13T16:47:20Z) - Exploiting Contrastive Learning and Numerical Evidence for Confusing
Legal Judgment Prediction [46.71918729837462]
Given the fact description text of a legal case, legal judgment prediction aims to predict the case's charge, law article and penalty term.
Previous studies fail to distinguish different classification errors with a standard cross-entropy classification loss.
We propose a moco-based supervised contrastive learning to learn distinguishable representations.
We further enhance the representation of the fact description with extracted crime amounts which are encoded by a pre-trained numeracy model.
arXiv Detail & Related papers (2022-11-15T15:53:56Z) - Zero-Shot On-the-Fly Event Schema Induction [61.91468909200566]
We present a new approach in which large language models are utilized to generate source documents that allow predicting, given a high-level event definition, the specific events, arguments, and relations between them.
Using our model, complete schemas on any topic can be generated on-the-fly without any manual data collection, i.e., in a zero-shot manner.
arXiv Detail & Related papers (2022-10-12T14:37:00Z) - EA$^2$E: Improving Consistency with Event Awareness for Document-Level
Argument Extraction [52.43978926985928]
We introduce the Event-Aware Argument Extraction (EA$2$E) model with augmented context for training and inference.
Experiment results on WIKIEVENTS and ACE2005 datasets demonstrate the effectiveness of EA$2$E.
arXiv Detail & Related papers (2022-05-30T04:33:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.