Matrix product states and first quantization
- URL: http://arxiv.org/abs/2404.07105v1
- Date: Wed, 10 Apr 2024 15:44:02 GMT
- Title: Matrix product states and first quantization
- Authors: Jheng-Wei Li, Xavier Waintal,
- Abstract summary: We introduce a first-quantized Matrix Product State approach to simulate quantum many-body systems.
We show that by reformulating the way the fermionic anti-symmetry is handled, we arrive at MPS with a level of entanglement comparable to the usual one found in second quantization.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Common wisdom says that the entanglement of fermionic systems can be low in the second quantization formalism but is extremely large in the first quantization. Hence Matrix Product State (MPS) methods based on moderate entanglement have been overwhelmingly formulated in second quantization. Here we introduce a first-quantized MPS approach to simulate quantum many-body systems. We show that by reformulating the way the fermionic anti-symmetry is handled, we arrive at MPS with a level of entanglement comparable to the usual one found in second quantization. We demonstrate our scheme on the one-dimensional $t$-$V$ model (spinless fermions with nearest neighbour density-density interaction) for both ground state and time evolution. For time evolution, we find that the entanglement entropy in first quantization is significantly smaller than in its second quantization counterpart.
Related papers
- Quantum Simulations of Chemistry in First Quantization with any Basis Set [0.0]
Quantum computation of the energy of molecules and materials is one of the most promising applications of fault-tolerant quantum computers.
Previous work has mainly represented the Hamiltonian of the system in second quantization.
We present a method to solve the generic ground-state chemistry problem in first quantization on a fault-tolerant quantum computer using any basis set.
This allows for calculations in the active space using modern quantum chemistry basis sets.
arXiv Detail & Related papers (2024-08-06T12:40:32Z) - How much entanglement is needed for emergent anyons and fermions? [9.27220088595816]
We provide quantitative characterizations of entanglement necessary for emergent anyons and fermions.
For systems with emergent fermions, despite that the ground state subspaces could be exponentially huge, we show that the GEM also scales linearly in the system size.
Our results also establish an intriguing link between quantum anomaly and entanglement.
arXiv Detail & Related papers (2024-05-13T17:47:15Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Meson content of entanglement spectra after integrable and nonintegrable
quantum quenches [0.0]
We calculate the time evolution of the lower part of the entanglement spectrum and return rate functions after global quantum quenches in the Ising model.
Our analyses provide a deeper understanding on the role of quantum information quantities for the dynamics of emergent phenomena reminiscent to systems in high-energy physics.
arXiv Detail & Related papers (2022-10-27T18:00:01Z) - Second quantization of open quantum systems in Liouville space [0.0]
We consider an ensemble of identical quantum emitters characterized by a discrete set of quantum states.
In contrast to conventional Hilbert space techniques, statistically mixed states and dissipation are naturally incorporated.
We study the effect of incoherent processes and statistical mixing of emitters' initial states in the interaction with quantum light.
arXiv Detail & Related papers (2022-07-28T17:10:02Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Linear growth of the entanglement entropy for quadratic Hamiltonians and
arbitrary initial states [11.04121146441257]
We prove that the entanglement entropy of any pure initial state of a bosonic quantum system grows linearly in time.
We discuss several applications of our results to physical systems with (weakly) interacting Hamiltonians and periodically driven quantum systems.
arXiv Detail & Related papers (2021-07-23T07:55:38Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.