Efficient and Accurate Spatial Mixing of Machine Learned Interatomic Potentials for Materials Science
- URL: http://arxiv.org/abs/2502.19081v1
- Date: Wed, 26 Feb 2025 12:19:39 GMT
- Title: Efficient and Accurate Spatial Mixing of Machine Learned Interatomic Potentials for Materials Science
- Authors: Fraser Birks, Thomas D Swinburne, James R Kermode,
- Abstract summary: Machine-learned interatomic potentials offer near first-principles accuracy but are computationally expensive.<n>We present ML-mix, an efficient and flexible LAMMPS package for accelerating simulations by spatially mixing interatomic potentials.<n>We show it is possible to generate a 'cheap' approximate model which closely matches an 'expensive' reference in relevant regions of configuration space.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine-learned interatomic potentials offer near first-principles accuracy but are computationally expensive, limiting their application in large-scale molecular dynamics simulations. Inspired by quantum mechanics/molecular mechanics methods, we present ML-MIX, an efficient and flexible LAMMPS package for accelerating simulations by spatially mixing interatomic potentials of different complexities. Through constrained linear fitting, we show it is possible to generate a 'cheap' approximate model which closely matches an 'expensive' reference in relevant regions of configuration space. We demonstrate the capability of ML-MIX through case-studies in Si, Fe, and W-He systems, achieving up to an 11x speedup on 8,000 atom systems without sacrificing accuracy on static and dynamic quantities, including calculation of minimum energy paths and dynamical simulations of defect diffusion. For larger domain sizes, we show that the achievable speedup of ML-MIX simulations is limited only by the relative speed of the cheap potential over the expensive potential. The ease of use and flexible nature of this method will extend the practical reach of MLIPs throughout computational materials science, enabling parsimonious application to large spatial and temporal domains.
Related papers
- Interpolation and differentiation of alchemical degrees of freedom in machine learning interatomic potentials [0.980222898148295]
We report the use of continuous and differentiable alchemical degrees of freedom in atomistic materials simulations.<n>The proposed method introduces alchemical atoms with corresponding weights into the input graph, alongside modifications to the message-passing and readout mechanisms of MLIPs.<n>The end-to-end differentiability of MLIPs enables efficient calculation of the gradient of energy with respect to the compositional weights.
arXiv Detail & Related papers (2024-04-16T17:24:22Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Towards Complex Dynamic Physics System Simulation with Graph Neural ODEs [75.7104463046767]
This paper proposes a novel learning based simulation model that characterizes the varying spatial and temporal dependencies in particle systems.
We empirically evaluate GNSTODE's simulation performance on two real-world particle systems, Gravity and Coulomb.
arXiv Detail & Related papers (2023-05-21T03:51:03Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - Simulate Time-integrated Coarse-grained Molecular Dynamics with
Multi-Scale Graph Networks [4.444748822792469]
Learning-based force fields have made significant progress in accelerating ab-initio MD simulation but are not fast enough for many real-world applications.
We aim to address these challenges by learning a multi-scale graph neural network that directly simulates coarse-grained MD with a very large time step.
arXiv Detail & Related papers (2022-04-21T18:07:08Z) - NNP/MM: Accelerating molecular dynamics simulations with machine
learning potentials and molecular mechanic [38.50309739333058]
We introduce an optimized implementation of the hybrid method (NNP/MM), which combines neural network potentials (NNP) and molecular mechanics (MM)
This approach models a portion of the system, such as a small molecule, using NNP while employing MM for the remaining system to boost efficiency.
It has enabled us to increase the simulation speed by 5 times and achieve a combined sampling of one microsecond for each complex, marking the longest simulations ever reported for this class of simulation.
arXiv Detail & Related papers (2022-01-20T10:57:20Z) - Hybridized Methods for Quantum Simulation in the Interaction Picture [69.02115180674885]
We provide a framework that allows different simulation methods to be hybridized and thereby improve performance for interaction picture simulations.
Physical applications of these hybridized methods yield a gate complexity scaling as $log2 Lambda$ in the electric cutoff.
For the general problem of Hamiltonian simulation subject to dynamical constraints, these methods yield a query complexity independent of the penalty parameter $lambda$ used to impose an energy cost.
arXiv Detail & Related papers (2021-09-07T20:01:22Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof.
Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 atoms.
arXiv Detail & Related papers (2021-06-08T10:14:57Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z) - Analog quantum simulation of chemical dynamics [0.0]
We show that analog quantum simulators can efficiently simulate molecular dynamics using bosonic modes to represent vibrations.
Our approach can be implemented in any device with a qudit controllably coupled to bosonic oscillators.
We expect our method will enable classically intractable chemical dynamics simulations in the near term.
arXiv Detail & Related papers (2020-12-03T11:52:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.