論文の概要: Finding Dino: A plug-and-play framework for unsupervised detection of out-of-distribution objects using prototypes
- arxiv url: http://arxiv.org/abs/2404.07664v1
- Date: Thu, 11 Apr 2024 11:55:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 14:09:30.861263
- Title: Finding Dino: A plug-and-play framework for unsupervised detection of out-of-distribution objects using prototypes
- Title(参考訳): Finding Dino: プロトタイプを用いた分布外物体の教師なし検出のためのプラグイン・アンド・プレイフレームワーク
- Authors: Poulami Sinhamahapatra, Franziska Schwaiger, Shirsha Bose, Huiyu Wang, Karsten Roscher, Stephan Guennemann,
- Abstract要約: ラベルを含まないPRototype-based zero-shot OOD Detection (PROWL)
ラベルなしのPROWL(PRototype-based zero-shot OOD Detection Without Labels)を提案する。
ドメインデータセットのトレーニングを必要としない推論ベースのメソッドである。
また、鉄道や海上のシーンなど他の領域にも適合することを示す。
- 参考スコア(独自算出の注目度): 12.82756672393553
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting and localising unknown or Out-of-distribution (OOD) objects in any scene can be a challenging task in vision. Particularly, in safety-critical cases involving autonomous systems like automated vehicles or trains. Supervised anomaly segmentation or open-world object detection models depend on training on exhaustively annotated datasets for every domain and still struggle in distinguishing between background and OOD objects. In this work, we present a plug-and-play generalised framework - PRototype-based zero-shot OOD detection Without Labels (PROWL). It is an inference-based method that does not require training on the domain dataset and relies on extracting relevant features from self-supervised pre-trained models. PROWL can be easily adapted to detect OOD objects in any operational design domain by specifying a list of known classes from this domain. PROWL, as an unsupervised method, outperforms other supervised methods trained without auxiliary OOD data on the RoadAnomaly and RoadObstacle datasets provided in SegmentMeIfYouCan (SMIYC) benchmark. We also demonstrate its suitability for other domains such as rail and maritime scenes.
- Abstract(参考訳): 未知または分布外(OOD)オブジェクトを任意のシーンで検出し、ローカライズすることは、視界において難しい作業である。
特に、自動運転車や電車のような自律システムに関わる安全上の重要なケースでは。
修正された異常セグメンテーションまたはオープンワールドオブジェクト検出モデルは、すべてのドメインに対して全アノテーション付きデータセットのトレーニングに依存しており、バックグラウンドとOODオブジェクトの区別に苦慮している。
本研究では, PROWL (Plototype-based zero-shot OOD detection Without Labels) を提案する。
ドメインデータセットのトレーニングを必要とせず、自己教師付き事前訓練モデルから関連する特徴を抽出することに依存する推論ベースの手法である。
PROWLは、このドメインから既知のクラスのリストを指定することで、任意のオペレーショナルデザインドメインのOODオブジェクトを容易に検出できる。
PROWLは教師なしの方法として、SegmentMeIfYouCan(SMIYC)ベンチマークで提供されるRoadAnomalyとRoadObstacleデータセットで、補助的なOODデータなしでトレーニングされた他の教師ありメソッドよりも優れています。
また、鉄道や海上のシーンなど他の領域にも適合することを示す。
関連論文リスト
- Envisioning Outlier Exposure by Large Language Models for Out-of-Distribution Detection [71.93411099797308]
オープンワールドシナリオに機械学習モデルをデプロイする場合、アウト・オブ・ディストリビューション(OOD)サンプルは不可欠である。
本稿では,大規模言語モデル(LLM)の専門知識と推論能力を活用して,この制約に対処することを提案する。
EOEは、遠、近、きめ細かいOOD検出など、さまざまなタスクに一般化することができる。
EOEは様々なOODタスクで最先端のパフォーマンスを実現し、ImageNet-1Kデータセットに効果的にスケールできる。
論文 参考訳(メタデータ) (2024-06-02T17:09:48Z) - Revisiting Out-of-Distribution Detection in LiDAR-based 3D Object Detection [12.633311483061647]
アウト・オブ・ディストリビューション(OOD)オブジェクトは誤分類を引き起こし、自動車両の安全性と信頼性に重大なリスクをもたらす。
我々は、ポイントクラウドを変更することなく既存のデータセットを使用できる新しい評価プロトコルを提案する。
提案手法の有効性は,新たに提案したnuScenes OODベンチマークを用いて検証した。
論文 参考訳(メタデータ) (2024-04-24T13:48:38Z) - Semi-Supervised Object Detection in the Open World [16.274397329511192]
我々は、IDデータのみに基づいて訓練された軽量自動エンコーダネットワークからなるアンサンブルベースのOOD検出器を提案する。
提案手法は最先端のOOD検出アルゴリズムと競合し,オープンワールドシナリオにおける半教師付き学習性能を大幅に向上させる。
論文 参考訳(メタデータ) (2023-07-28T17:59:03Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - Background Matters: Enhancing Out-of-distribution Detection with Domain
Features [90.32910087103744]
OODサンプルは任意の分布から引き出すことができ、様々な次元における分布内(ID)データからの偏差を示す。
既存の方法は、ドメインの特徴のような他の次元を無視しながら、意味的特徴に基づいてOODサンプルを検出することに重点を置いている。
本稿では,IDトレーニングサンプルからドメインの特徴を高密度な予測手法により学習することのできる,新しい汎用フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-15T16:12:14Z) - Towards Textual Out-of-Domain Detection without In-Domain Labels [41.23096594140221]
この研究は、ドメイン内のデータのラベルにアクセスできないOOD検出の難しいケースに焦点を当てている。
まず、トークン列の確率を予測する異なる言語モデルに基づくアプローチを評価する。
教師なしクラスタリングとコントラスト学習を組み合わせた表現学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-22T00:11:46Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3Dオブジェクト検出ネットワークは、トレーニングされたデータに対してバイアスを受ける傾向がある。
そこで本研究では,ライダーを用いた3次元物体検出器のソースレス・教師なし領域適応のための単一フレーム手法を提案する。
論文 参考訳(メタデータ) (2021-11-30T18:42:42Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
セグメンテーションにおけるアウト・オブ・ディストリビューション(OOD)オブジェクトの検出に取り組む。
私たちの主な貢献は、ObsNetと呼ばれる新しいOOD検出アーキテクチャであり、ローカル・アタック(LAA)に基づく専用トレーニングスキームと関連付けられています。
3つの異なるデータセットの文献の最近の10つの手法と比較して,速度と精度の両面で最高の性能が得られることを示す。
論文 参考訳(メタデータ) (2021-08-03T17:09:56Z) - Robust Object Detection via Instance-Level Temporal Cycle Confusion [89.1027433760578]
物体検出器の分布外一般化を改善するための補助的自己監視タスクの有効性を検討する。
最大エントロピーの原理に触発されて,新しい自己監督タスクであるインスタンスレベル時間サイクル混乱(cycconf)を導入する。
それぞれのオブジェクトに対して、タスクは、ビデオ内の隣接するフレームで最も異なるオブジェクトの提案を見つけ、自己スーパービジョンのために自分自身にサイクルバックすることです。
論文 参考訳(メタデータ) (2021-04-16T21:35:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。