Calibration of Continual Learning Models
- URL: http://arxiv.org/abs/2404.07817v2
- Date: Fri, 12 Apr 2024 12:33:26 GMT
- Title: Calibration of Continual Learning Models
- Authors: Lanpei Li, Elia Piccoli, Andrea Cossu, Davide Bacciu, Vincenzo Lomonaco,
- Abstract summary: Continual Learning (CL) focuses on maximizing the predictive performance of a model across a non-stationary stream of data.
Model calibration is an active research topic in machine learning, yet to be properly investigated in CL.
We provide the first empirical study of the behavior of calibration approaches in CL, showing that CL strategies do not inherently learn calibrated models.
- Score: 18.547902778976084
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continual Learning (CL) focuses on maximizing the predictive performance of a model across a non-stationary stream of data. Unfortunately, CL models tend to forget previous knowledge, thus often underperforming when compared with an offline model trained jointly on the entire data stream. Given that any CL model will eventually make mistakes, it is of crucial importance to build calibrated CL models: models that can reliably tell their confidence when making a prediction. Model calibration is an active research topic in machine learning, yet to be properly investigated in CL. We provide the first empirical study of the behavior of calibration approaches in CL, showing that CL strategies do not inherently learn calibrated models. To mitigate this issue, we design a continual calibration approach that improves the performance of post-processing calibration methods over a wide range of different benchmarks and CL strategies. CL does not necessarily need perfect predictive models, but rather it can benefit from reliable predictive models. We believe our study on continual calibration represents a first step towards this direction.
Related papers
- Calibrating Multi-modal Representations: A Pursuit of Group Robustness without Annotations [19.800907485589402]
Fine-tuning pre-trained vision-language models, like CLIP, has yielded success on diverse downstream tasks.
These tuned models tend to become highly specialized, limiting their practicality for real-world deployment.
We propose a lightweight representation calibration method for fine-tuning CLIP.
arXiv Detail & Related papers (2024-03-12T01:47:17Z) - Calibrating Large Language Models with Sample Consistency [76.23956851098598]
We explore the potential of deriving confidence from the distribution of multiple randomly sampled model generations, via three measures of consistency.
Results show that consistency-based calibration methods outperform existing post-hoc approaches.
We offer practical guidance on choosing suitable consistency metrics for calibration, tailored to the characteristics of various LMs.
arXiv Detail & Related papers (2024-02-21T16:15:20Z) - On the Calibration of Large Language Models and Alignment [63.605099174744865]
Confidence calibration serves as a crucial tool for gauging the reliability of deep models.
We conduct a systematic examination of the calibration of aligned language models throughout the entire construction process.
Our work sheds light on whether popular LLMs are well-calibrated and how the training process influences model calibration.
arXiv Detail & Related papers (2023-11-22T08:57:55Z) - Calibration in Deep Learning: A Survey of the State-of-the-Art [7.6087138685470945]
Calibrating deep neural models plays an important role in building reliable, robust AI systems in safety-critical applications.
Recent work has shown that modern neural networks that possess high predictive capability are poorly calibrated and produce unreliable model predictions.
arXiv Detail & Related papers (2023-08-02T15:28:10Z) - RanPAC: Random Projections and Pre-trained Models for Continual Learning [59.07316955610658]
Continual learning (CL) aims to learn different tasks (such as classification) in a non-stationary data stream without forgetting old ones.
We propose a concise and effective approach for CL with pre-trained models.
arXiv Detail & Related papers (2023-07-05T12:49:02Z) - Enabling Calibration In The Zero-Shot Inference of Large Vision-Language
Models [58.720142291102135]
We measure calibration across relevant variables like prompt, dataset, and architecture, and find that zero-shot inference with CLIP is miscalibrated.
A single learned temperature generalizes for each specific CLIP model across inference dataset and prompt choice.
arXiv Detail & Related papers (2023-03-11T17:14:04Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
Contrastive language-image pre-training (CLIP) models have shown impressive zero-shot ability, but the further adaptation of CLIP on downstream tasks undesirably degrades OOD performances.
We propose CLIPood, a fine-tuning method that can adapt CLIP models to OOD situations where both domain shifts and open classes may occur on unseen test data.
Experiments on diverse datasets with different OOD scenarios show that CLIPood consistently outperforms existing generalization techniques.
arXiv Detail & Related papers (2023-02-02T04:27:54Z) - Do Pre-trained Models Benefit Equally in Continual Learning? [25.959813589169176]
Existing work on continual learning (CL) is primarily devoted to developing algorithms for models trained from scratch.
Despite their encouraging performance on contrived benchmarks, these algorithms show dramatic performance drops in real-world scenarios.
This paper advocates the systematic introduction of pre-training to CL.
arXiv Detail & Related papers (2022-10-27T18:03:37Z) - Modular Conformal Calibration [80.33410096908872]
We introduce a versatile class of algorithms for recalibration in regression.
This framework allows one to transform any regression model into a calibrated probabilistic model.
We conduct an empirical study of MCC on 17 regression datasets.
arXiv Detail & Related papers (2022-06-23T03:25:23Z) - Quantile Regularization: Towards Implicit Calibration of Regression
Models [30.872605139672086]
We present a method for calibrating regression models based on a novel quantile regularizer defined as the cumulative KL divergence between two CDFs.
We show that the proposed quantile regularizer significantly improves calibration for regression models trained using approaches, such as Dropout VI and Deep Ensembles.
arXiv Detail & Related papers (2020-02-28T16:53:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.