論文の概要: Spurious Stationarity and Hardness Results for Mirror Descent
- arxiv url: http://arxiv.org/abs/2404.08073v1
- Date: Thu, 11 Apr 2024 18:28:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-15 16:34:33.664325
- Title: Spurious Stationarity and Hardness Results for Mirror Descent
- Title(参考訳): 鏡像の鮮度と硬度評価
- Authors: He Chen, Jiajin Li, Anthony Man-Cho So,
- Abstract要約: 既存の定常度尺度は定常点と非定常点を確実に区別できるのか?
既存の定常度対策は、必然的に急激な定常点の存在を示唆している。
我々の困難さの結果は、ユークリッドとブレグマンのジオメトリーの固有の区別を指摘し、機械学習と最適化コミュニティの両方に基本的な理論的および数値的課題を提起している。
- 参考スコア(独自算出の注目度): 28.89573559893313
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the considerable success of Bregman proximal-type algorithms, such as mirror descent, in machine learning, a critical question remains: Can existing stationarity measures, often based on Bregman divergence, reliably distinguish between stationary and non-stationary points? In this paper, we present a groundbreaking finding: All existing stationarity measures necessarily imply the existence of spurious stationary points. We further establish an algorithmic independent hardness result: Bregman proximal-type algorithms are unable to escape from a spurious stationary point in finite steps when the initial point is unfavorable, even for convex problems. Our hardness result points out the inherent distinction between Euclidean and Bregman geometries, and introduces both fundamental theoretical and numerical challenges to both machine learning and optimization communities.
- Abstract(参考訳): ミラー降下のようなブレグマン近位型アルゴリズムのかなりの成功にもかかわらず、機械学習において重要な疑問が残る: 既存の定常度測度は、しばしばブレグマンの発散に基づいて、定常点と非定常点を確実に区別できるだろうか?
本稿では, 既存の定常度対策はすべて, 必然的に急激な定常点の存在を示唆するものであることを示す。
ブレグマン近位型アルゴリズムは、凸問題であっても、初期点が好ましくないとき、有限ステップで突発的な定常点から逃れることができない。
我々の困難さの結果は、ユークリッドとブレグマンのジオメトリーの固有の区別を指摘し、機械学習と最適化コミュニティの両方に基本的な理論的および数値的課題を提起している。
関連論文リスト
- Trust-Region Sequential Quadratic Programming for Stochastic Optimization with Random Models [57.52124921268249]
本稿では,1次と2次の両方の定常点を見つけるための信頼逐次準計画法を提案する。
本手法は, 1次定常点に収束するため, 対象対象の近似を最小化して定義された各イテレーションの勾配ステップを計算する。
2階定常点に収束するため,本手法は負曲率を減少するヘッセン行列を探索する固有ステップも計算する。
論文 参考訳(メタデータ) (2024-09-24T04:39:47Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
近点法はその数値的安定性と不完全なチューニングに対する頑健性からかなりの関心を集めている。
本稿では,近位点法(SPPM)の幅広いバリエーションの包括的解析について述べる。
論文 参考訳(メタデータ) (2024-05-24T21:09:19Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
我々は、様々な武器の報酬間の経験的ギャップに基づいて、あらゆるラウンドで腕を拒絶できる真に適応的なアルゴリズムであるsredを提示する。
特に、様々な武器の報酬の間の経験的ギャップに基づいて、あらゆるラウンドで腕を拒絶できる真に適応的なアルゴリズムであるsredを提示する。
論文 参考訳(メタデータ) (2023-12-19T13:17:43Z) - Riemannian stochastic optimization methods avoid strict saddle points [68.80251170757647]
研究中のポリシーは、確率 1 の厳密なサドル点/部分多様体を避けていることを示す。
この結果は、アルゴリズムの極限状態が局所最小値にしかならないことを示すため、重要な正当性チェックを提供する。
論文 参考訳(メタデータ) (2023-11-04T11:12:24Z) - Optimal and exact recovery on general non-uniform Hypergraph Stochastic Block Model [0.0]
非一様ハイパーグラフ化ブロックモデル(HSBM)に基づくランダムハイパーグラフにおけるコミュニティ検出問題の検討
文献ではじめて、この一様でないケース下での正確な回復のための鋭いしきい値が、小さな制約の下で確立された。
しきい値を超えると正確な回復を達成でき、正確な回復が不可能な場合には最小の確率で達成できる2つの効率的なアルゴリズムを提供する。
論文 参考訳(メタデータ) (2023-04-25T20:30:33Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
可分バナッハ空間上で定義された収縮作用素の定点を推定する問題について検討する。
演算子欠陥と推定誤差の両方に対して漸近的でない境界を確立する。
論文 参考訳(メタデータ) (2022-01-21T02:46:57Z) - A Stochastic Bregman Primal-Dual Splitting Algorithm for Composite
Optimization [2.9112649816695204]
実バナッハ空間上の凸凹サドル点問題の第一次原始双対解法について検討する。
我々のフレームワークは一般であり、アルゴリズムにおいてブレグマンの発散を誘導するエントロピーの強い凸性を必要としない。
数値的な応用としては、エントロピー的正則化ワッサーシュタイン・バリセンタ問題や、単純体上の正則化逆問題などが挙げられる。
論文 参考訳(メタデータ) (2021-12-22T14:47:44Z) - Stochastic Mirror Descent for Low-Rank Tensor Decomposition Under
Non-Euclidean Losses [43.01811529439942]
本研究は、非ユークリッド損失関数のクラスの下で低位正準多進分解(cpd)を考える。
この研究は、様々な非ユークリッド損失関数の下で大規模なCPD分解のための統一アルゴリズムフレームワークを提供する。
論文 参考訳(メタデータ) (2021-04-29T14:58:25Z) - Stochastic optimization with momentum: convergence, fluctuations, and
traps avoidance [0.0]
本稿では,重球法,ネステロフ加速勾配法(S-NAG),広く使用されているアダム法など,勾配勾配勾配のいくつかの変種を統一する一般最適化手法について検討する。
この回避は、非自明な常微分方程式のノイズ離散化として研究される。
論文 参考訳(メタデータ) (2020-12-07T19:14:49Z) - An Analysis of Constant Step Size SGD in the Non-convex Regime:
Asymptotic Normality and Bias [17.199063087458907]
臨界点が好ましい統計特性を持つ構造化された非学習問題は、統計機械学習において頻繁に発生する。
我々は,SGDアルゴリズムが実際に広く利用されていることを示す。
論文 参考訳(メタデータ) (2020-06-14T13:58:44Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
オンラインデータストリームによって生成される有限個の点からなるランダムな確率測度に対する人口推定バリセンタ問題を考察する。
本稿では,この問題の構造を用いて,凸凹型サドル点再構成を行う。
ランダム確率測度の分布が離散的な場合、最適化アルゴリズムを提案し、その複雑性を推定する。
論文 参考訳(メタデータ) (2020-06-11T19:40:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。