論文の概要: A least-square method for non-asymptotic identification in linear switching control
- arxiv url: http://arxiv.org/abs/2404.08120v1
- Date: Thu, 11 Apr 2024 20:55:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-15 16:24:45.389204
- Title: A least-square method for non-asymptotic identification in linear switching control
- Title(参考訳): 線形切換制御における非漸近同定のための最小二乗法
- Authors: Haoyuan Sun, Ali Jadbabaie,
- Abstract要約: 基礎となる部分観測線形力学系は、既知の候補モデルの有限集合内にあることが知られている。
線形最小二乗法の非漸近解析における最近の進歩を活用して、この問題の有限時間サンプル複雑性を特徴づける。
基礎となるシステムの未知のパラメータを識別するデータ駆動型スイッチング戦略を提案する。
- 参考スコア(独自算出の注目度): 17.938732931331064
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The focus of this paper is on linear system identification in the setting where it is known that the underlying partially-observed linear dynamical system lies within a finite collection of known candidate models. We first consider the problem of identification from a given trajectory, which in this setting reduces to identifying the index of the true model with high probability. We characterize the finite-time sample complexity of this problem by leveraging recent advances in the non-asymptotic analysis of linear least-square methods in the literature. In comparison to the earlier results that assume no prior knowledge of the system, our approach takes advantage of the smaller hypothesis class and leads to the design of a learner with a dimension-free sample complexity bound. Next, we consider the switching control of linear systems, where there is a candidate controller for each of the candidate models and data is collected through interaction of the system with a collection of potentially destabilizing controllers. We develop a dimension-dependent criterion that can detect those destabilizing controllers in finite time. By leveraging these results, we propose a data-driven switching strategy that identifies the unknown parameters of the underlying system. We then provide a non-asymptotic analysis of its performance and discuss its implications on the classical method of estimator-based supervisory control.
- Abstract(参考訳): 本論文の焦点は、線形力学系が既知の候補モデルの有限個の集合内にあることが知られている環境での線形系同定である。
まず、与えられた軌跡から同定する問題を考察し、この設定では真モデルの指標を高い確率で同定する。
文献における線形最小二乗法の非漸近解析における最近の進歩を活用して、この問題の有限時間サンプル複雑性を特徴づける。
システムの事前知識を前提としない初期の結果と比較して,提案手法はより小さな仮説クラスを生かし,次元自由なサンプル複雑性境界を持つ学習者の設計につながる。
次に,線形システムのスイッチング制御について考察し,各候補モデルに候補コントローラが存在する場合と,潜在的に不安定なコントローラの集合との相互作用を通じてデータを収集する。
我々は、これらの不安定化コントローラを有限時間で検出できる次元依存的基準を開発する。
これらの結果を活用することで,基礎となるシステムの未知パラメータを識別するデータ駆動型スイッチング戦略を提案する。
次に、その性能の漸近的でない解析を行い、推定器に基づく監督制御の古典的方法にその影響について論じる。
関連論文リスト
- Identification For Control Based on Neural Networks: Approximately Linearizable Models [42.15267357325546]
本研究では,非線形システムの効率的な制御設計と安定性解析のための制御指向同定手法を提案する。
ニューラルネットワークは離散時間非線形状態空間モデルを特定し、時間領域の入力出力挙動を近似する。
ネットワークは、同定されたモデルがフィードバックによってほぼ線形化可能であるように構成され、制御則が学習段階から自明に従うことを保証する。
論文 参考訳(メタデータ) (2024-09-24T08:31:22Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
異常検出は様々なアプリケーションにおいて基本的な役割を果たす。
既存のメソッドでは、インスタンスがデータとして容易に観察できないシステムであるシナリオを扱うのが難しい。
システム埋め込みを学習するエンコーダデコーダモジュールを含むエンドツーエンドアプローチを開発する。
論文 参考訳(メタデータ) (2023-04-21T02:20:24Z) - Stability Bounds for Learning-Based Adaptive Control of Discrete-Time
Multi-Dimensional Stochastic Linear Systems with Input Constraints [3.8004168340068336]
本研究では,有界制御入力制約と非有界障害を有する離散時間多次元システムの適応安定化問題について考察する。
本稿では,オンラインパラメータ推定と飽和線形制御を組み合わせた等価制御手法を提案する。
論文 参考訳(メタデータ) (2023-04-02T16:38:13Z) - LMI-based Data-Driven Robust Model Predictive Control [0.1473281171535445]
入力制約と状態制約を考慮したデータ駆動型ロバストな線形行列不等式モデル予測制御手法を提案する。
コントローラは閉ループシステムを安定化し、制約満足度を保証する。
論文 参考訳(メタデータ) (2023-03-08T18:20:06Z) - Robust identification of non-autonomous dynamical systems using
stochastic dynamics models [0.0]
本稿では, 非線形・非線形非自律系における雑音・スパースデータからのシステム識別(ID)の問題について考察する。
隠れマルコフモデル学習のためのベイズ式から導かれる目的関数を提案し,解析する。
提案手法は,システムIDに適合するスムーズさと本質的な正規化を改善したことを示す。
論文 参考訳(メタデータ) (2022-12-20T16:36:23Z) - Formal Controller Synthesis for Markov Jump Linear Systems with
Uncertain Dynamics [64.72260320446158]
マルコフジャンプ線形系に対する制御器の合成法を提案する。
本手法は,MJLSの離散(モードジャンピング)と連続(確率線形)の両方の挙動を捉える有限状態抽象化に基づいている。
本手法を複数の現実的なベンチマーク問題,特に温度制御と航空機の配送問題に適用する。
論文 参考訳(メタデータ) (2022-12-01T17:36:30Z) - Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations [114.17826109037048]
通常の微分方程式(ODE)は、機械学習において最近多くの注目を集めている。
理論的な側面、例えば、統計的推定の識別可能性と特性は、いまだに不明である。
本稿では,1つの軌道からサンプリングされた等間隔の誤差のない観測結果から,同次線形ODE系の同定可能性について十分な条件を導出する。
論文 参考訳(メタデータ) (2022-10-12T06:46:38Z) - An Accelerated Doubly Stochastic Gradient Method with Faster Explicit
Model Identification [97.28167655721766]
本稿では、分散正規化損失最小化問題に対する2倍加速勾配降下法(ADSGD)を提案する。
まず、ADSGDが線形収束率を達成でき、全体的な計算複雑性を低減できることを示す。
論文 参考訳(メタデータ) (2022-08-11T22:27:22Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - Non-Episodic Learning for Online LQR of Unknown Linear Gaussian System [0.0]
単一の軌道からシステムに関する知識を得るオンライン非分離アルゴリズムを提案する。
識別と制御のほぼ確実に収束する割合を特徴付け、探索と搾取の間の最適なトレードオフを明らかにする。
論文 参考訳(メタデータ) (2021-03-24T15:51:28Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
状態遷移が既知の状態-作用対の特徴埋め込みに線形に依存する非線形力学系のクラスについて検討する。
そこで本稿では, トラジェクティブ・プランニング, トラジェクティブ・トラッキング, システムの再推定という3つのステップを繰り返すことで, この問題を解決するためのアクティブ・ラーニング・アプローチを提案する。
本手法は, 非線形力学系を標準線形回帰の統計速度と同様, パラメトリック速度で推定する。
論文 参考訳(メタデータ) (2020-06-18T04:54:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。