Discord-type quantum correlations in axially symmetric spin-(1/2, $S$) systems
- URL: http://arxiv.org/abs/2404.08124v1
- Date: Thu, 11 Apr 2024 21:04:25 GMT
- Title: Discord-type quantum correlations in axially symmetric spin-(1/2, $S$) systems
- Authors: Saeed Haddadi, M. A. Yurischev,
- Abstract summary: We study a mixed spin-$(1/2, S)$ system with arbitrary spin $S$ and interactions satisfying the U(1) axial symmetry.
We find that as the system cools, quantum correlations can undergo one or more abrupt transitions while the temperature changes smoothly.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A mixed spin-$(1/2, S)$ system with arbitrary spin $S$ and interactions satisfying the U(1) axial symmetry is considered. Compact explicit forms of the local quantum uncertainty (LQU) and local quantum Fisher information (LQFI) are obtained directly through the entries and eigenvalues of the density matrix. Using these forms, we perform a comparative study of discord-type quantum correlations LQU and LQFI for the system at thermal equilibrium. An increase in quantum correlations with increasing spin length $S$ is discovered. Moreover, we find that as the system cools, quantum correlations can undergo one or more abrupt transitions while the temperature changes smoothly.
Related papers
- Quantum Information Resources in Spin-1 Heisenberg Dimer Systems [0.0]
We explore the quantum information resources within bipartite pure and mixed states of the quantum spin-1 Heisenberg dimer system.
We derive the system's density operator at thermal equilibrium and establish a mathematical framework for analyzing quantum correlation metrics.
arXiv Detail & Related papers (2024-09-12T14:36:21Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Quantum Fisher Information for Different States and Processes in Quantum
Chaotic Systems [77.34726150561087]
We compute the quantum Fisher information (QFI) for both an energy eigenstate and a thermal density matrix.
We compare our results with earlier results for a local unitary transformation.
arXiv Detail & Related papers (2023-04-04T09:28:19Z) - Local quantum Fisher information and local quantum uncertainty for
general X-states [0.0]
We derive formulas for the local quantum Fisher information (LQFI) and local quantum uncertainty (LQU) directly in terms of model parameters.
Sudden transitions of quantum correlations with a smooth change in temperature are found.
arXiv Detail & Related papers (2023-03-07T06:56:24Z) - Scalable Spin Squeezing from Finite Temperature Easy-plane Magnetism [26.584014467399378]
We conjecture that any Hamiltonian exhibiting finite temperature, easy-plane ferromagnetism can be used to generate scalable spin squeezing.
Our results provide insights into the landscape of Hamiltonians that can be used to generate metrologically useful quantum states.
arXiv Detail & Related papers (2023-01-23T18:59:59Z) - Quantum nonreciprocal interactions via dissipative gauge symmetry [18.218574433422535]
One-way nonreciprocal interactions between two quantum systems are typically described by a cascaded quantum master equation.
We present a new approach for obtaining nonreciprocal quantum interactions that is completely distinct from cascaded quantum systems.
arXiv Detail & Related papers (2022-03-17T15:34:40Z) - Dynamical quantum phase transitions in spin-$S$ $\mathrm{U}(1)$ quantum
link models [0.0]
Dynamical quantum phase transitions (DQPTs) are a powerful concept of probing far-from-equilibrium criticality in quantum many-body systems.
We use infinite matrix product state techniques to study DQPTs in spin-$S$ $mathrmU(1)$ quantum link models.
Our findings indicate that DQPTs are fundamentally different between the Wilson--Kogut--Susskind limit and its representation through the quantum link formalism.
arXiv Detail & Related papers (2022-03-02T19:00:02Z) - Entanglement Dynamics between Ising Spins and a Central Ancilla [0.0]
We study competing entanglement dynamics in an open Ising-spin chain coupled to an external central ancilla qudit.
In this setting, purely spin-spin entanglement metrics such as mutual information and quantum Fisher information (QFI) decay as the ancilla entanglement entropy grows.
Our results present a new framework that connects physical spin-fluctuations, QFI, and bipartite entanglement entropy between collective quantum systems.
arXiv Detail & Related papers (2021-03-15T16:39:33Z) - Quantum Fisher information and skew information correlations in dipolar
spin system [1.5630592429258865]
Quantum Fisher information (QFI) and skew information (SI) plays a key role in the quantum resource theory.
We consider a pair ofspin-1/2 particles coupled with dipolar and Dzyaloshinsky-Moriya (DM) interactions, serving as the physical carrier of quantum information.
arXiv Detail & Related papers (2020-11-11T16:18:11Z) - Doubly Modulated Optical Lattice Clock Interference and Topology [17.566717348287685]
We simultaneously modulate the frequency of the lattice laser and the Rabi frequency in an optical lattice clock (OLC) system.
Thanks to ultra-high precision and ultra-stability of OLC, the relative phase could be fine-tuned.
By experimentally detecting the eigen-energies, we demonstrate the relation between effective Floquet Hamiltonian and 1-D topological insulator with high winding number.
arXiv Detail & Related papers (2020-09-24T13:20:35Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.