Hindsight PRIORs for Reward Learning from Human Preferences
- URL: http://arxiv.org/abs/2404.08828v1
- Date: Fri, 12 Apr 2024 21:59:42 GMT
- Title: Hindsight PRIORs for Reward Learning from Human Preferences
- Authors: Mudit Verma, Katherine Metcalf,
- Abstract summary: Preference based Reinforcement Learning (PbRL) removes the need to hand specify a reward function by learning a reward from preference feedback over policy behaviors.
Current approaches to PbRL do not address the credit assignment problem inherent in determining which parts of a behavior most contributed to a preference.
We introduce a credit assignment strategy (Hindsight PRIOR) that uses a world model to approximate state importance within a trajectory and then guides rewards to be proportional to state importance.
- Score: 3.4990427823966828
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Preference based Reinforcement Learning (PbRL) removes the need to hand specify a reward function by learning a reward from preference feedback over policy behaviors. Current approaches to PbRL do not address the credit assignment problem inherent in determining which parts of a behavior most contributed to a preference, which result in data intensive approaches and subpar reward functions. We address such limitations by introducing a credit assignment strategy (Hindsight PRIOR) that uses a world model to approximate state importance within a trajectory and then guides rewards to be proportional to state importance through an auxiliary predicted return redistribution objective. Incorporating state importance into reward learning improves the speed of policy learning, overall policy performance, and reward recovery on both locomotion and manipulation tasks. For example, Hindsight PRIOR recovers on average significantly (p<0.05) more reward on MetaWorld (20%) and DMC (15%). The performance gains and our ablations demonstrate the benefits even a simple credit assignment strategy can have on reward learning and that state importance in forward dynamics prediction is a strong proxy for a state's contribution to a preference decision. Code repository can be found at https://github.com/apple/ml-rlhf-hindsight-prior.
Related papers
- Rewarding Progress: Scaling Automated Process Verifiers for LLM Reasoning [90.23629291067763]
A promising approach for improving reasoning in large language models is to use process reward models (PRMs)
PRMs provide feedback at each step of a multi-step reasoning trace, potentially improving credit assignment over outcome reward models (ORMs)
To improve a base policy by running search against a PRM or using it as dense rewards for reinforcement learning (RL), we ask: "How should we design process rewards?"
We theoretically characterize the set of good provers and our results show that optimizing process rewards from such provers improves exploration during test-time search and online RL.
arXiv Detail & Related papers (2024-10-10T17:31:23Z) - Efficient Preference-based Reinforcement Learning via Aligned Experience Estimation [37.36913210031282]
Preference-based reinforcement learning (PbRL) has shown impressive capabilities in training agents without reward engineering.
We propose SEER, an efficient PbRL method that integrates label smoothing and policy regularization techniques.
arXiv Detail & Related papers (2024-05-29T01:49:20Z) - Would I have gotten that reward? Long-term credit assignment by
counterfactual contribution analysis [50.926791529605396]
We introduce Counterfactual Contribution Analysis (COCOA), a new family of model-based credit assignment algorithms.
Our algorithms achieve precise credit assignment by measuring the contribution of actions upon obtaining subsequent rewards.
arXiv Detail & Related papers (2023-06-29T09:27:27Z) - A State Augmentation based approach to Reinforcement Learning from Human
Preferences [20.13307800821161]
Preference Based Reinforcement Learning attempts to solve the issue by utilizing binary feedbacks on queried trajectory pairs.
We present a state augmentation technique that allows the agent's reward model to be robust.
arXiv Detail & Related papers (2023-02-17T07:10:50Z) - Rewards Encoding Environment Dynamics Improves Preference-based
Reinforcement Learning [4.969254618158096]
We show that encoding environment dynamics in the reward function (REED) dramatically reduces the number of preference labels required in state-of-the-art preference-based RL frameworks.
For some domains, REED-based reward functions result in policies that outperform policies trained on the ground truth reward.
arXiv Detail & Related papers (2022-11-12T00:34:41Z) - Symbol Guided Hindsight Priors for Reward Learning from Human
Preferences [2.512827436728378]
We present the PRIor Over Rewards (PRIOR) framework, which incorporates priors about the structure of the reward function and the preference feedback into the reward learning process.
We demonstrate that using an abstract state space for the computation of the priors further improves the reward learning and the agent's performance.
arXiv Detail & Related papers (2022-10-17T14:57:06Z) - Basis for Intentions: Efficient Inverse Reinforcement Learning using
Past Experience [89.30876995059168]
inverse reinforcement learning (IRL) -- inferring the reward function of an agent from observing its behavior.
This paper addresses the problem of IRL -- inferring the reward function of an agent from observing its behavior.
arXiv Detail & Related papers (2022-08-09T17:29:49Z) - Reward Uncertainty for Exploration in Preference-based Reinforcement
Learning [88.34958680436552]
We present an exploration method specifically for preference-based reinforcement learning algorithms.
Our main idea is to design an intrinsic reward by measuring the novelty based on learned reward.
Our experiments show that exploration bonus from uncertainty in learned reward improves both feedback- and sample-efficiency of preference-based RL algorithms.
arXiv Detail & Related papers (2022-05-24T23:22:10Z) - Offline Reinforcement Learning with Implicit Q-Learning [85.62618088890787]
Current offline reinforcement learning methods need to query the value of unseen actions during training to improve the policy.
We propose an offline RL method that never needs to evaluate actions outside of the dataset.
This method enables the learned policy to improve substantially over the best behavior in the data through generalization.
arXiv Detail & Related papers (2021-10-12T17:05:05Z) - Useful Policy Invariant Shaping from Arbitrary Advice [24.59807772487328]
A major challenge of RL research is to discover how to learn with less data.
Potential-based reward shaping (PBRS) holds promise, but it is limited by the need for a well-defined potential function.
The recently introduced dynamic potential based advice (DPBA) method tackles this challenge by admitting arbitrary advice from a human or other agent.
arXiv Detail & Related papers (2020-11-02T20:29:09Z) - Preference-based Reinforcement Learning with Finite-Time Guarantees [76.88632321436472]
Preference-based Reinforcement Learning (PbRL) replaces reward values in traditional reinforcement learning to better elicit human opinion on the target objective.
Despite promising results in applications, the theoretical understanding of PbRL is still in its infancy.
We present the first finite-time analysis for general PbRL problems.
arXiv Detail & Related papers (2020-06-16T03:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.