論文の概要: Predicting Traffic Congestion at Urban Intersections Using Data-Driven Modeling
- arxiv url: http://arxiv.org/abs/2404.08838v2
- Date: Tue, 16 Apr 2024 04:20:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 11:43:48.355460
- Title: Predicting Traffic Congestion at Urban Intersections Using Data-Driven Modeling
- Title(参考訳): データ駆動モデルによる都市間交通渋滞予測
- Authors: Tara Kelly, Jessica Gupta,
- Abstract要約: 本研究は,米国の主要都市の交差点における混雑予測モデルの構築を目的とする。
データセットには、座標、通り名、日時、トラフィックメトリクスを含む27の機能が含まれている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic congestion at intersections is a significant issue in urban areas, leading to increased commute times, safety hazards, and operational inefficiencies. This study aims to develop a predictive model for congestion at intersections in major U.S. cities, utilizing a dataset of trip-logging metrics from commercial vehicles across 4,800 intersections. The dataset encompasses 27 features, including intersection coordinates, street names, time of day, and traffic metrics (Kashyap et al., 2019). Additional features, such as rainfall/snowfall percentage, distance from downtown and outskirts, and road types, were incorporated to enhance the model's predictive power. The methodology involves data exploration, feature transformation, and handling missing values through low-rank models and label encoding. The proposed model has the potential to assist city planners and governments in anticipating traffic hot spots, optimizing operations, and identifying infrastructure challenges.
- Abstract(参考訳): 交差点での交通渋滞は都市部で大きな問題であり、通勤時間の増加、安全上の危険、運用上の不効率につながっている。
本研究では,米国の主要都市における交差点の混雑予測モデルの構築を目的として,4800の交差点にまたがる商用車両の走行記録データを用いて,都市間における混雑予測モデルを構築した。
データセットには、交差点座標、通り名、日時、交通メトリクス(Kashyap et al , 2019)を含む27の機能が含まれている。
降雨/降雪率、中心街と郊外からの距離、道路タイプといった追加の特徴は、モデルの予測力を高めるために組み込まれた。
この手法には、データ探索、特徴変換、低ランクモデルとラベルエンコーディングによる欠落値の処理が含まれる。
提案モデルでは,交通ホットスポットの予測,運用の最適化,インフラの課題の特定などにおいて,都市計画者や政府を支援する可能性を秘めている。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - IBB Traffic Graph Data: Benchmarking and Road Traffic Prediction Model [0.24999074238880487]
道路交通渋滞予測はインテリジェント交通システムにおいて重要な要素である。
IBB Traffic Graphデータセットは、2451の異なる場所で収集されたセンサーデータをカバーしている。
本稿では,機能工学を通して時間的リンクを強化する道路交通予測モデルを提案する。
論文 参考訳(メタデータ) (2024-08-02T05:23:19Z) - BjTT: A Large-scale Multimodal Dataset for Traffic Prediction [49.93028461584377]
従来の交通予測手法は、交通トレンドを予測するために、過去の交通データに依存している。
本研究では,交通システムを記述するテキストと生成モデルを組み合わせることで,交通生成にどのように応用できるかを考察する。
本稿では,テキスト・トラフィック生成のための最初の拡散モデルChatTrafficを提案する。
論文 参考訳(メタデータ) (2024-03-08T04:19:56Z) - Enhancing Spatiotemporal Traffic Prediction through Urban Human Activity
Analysis [6.8775337739726226]
本稿では,グラフ畳み込み深層学習アルゴリズムに基づく交通予測手法を提案する。
本研究では,宮内庁旅行調査の人的活動頻度データを活用し,活動と交通パターンの因果関係の推測能力を高める。
論文 参考訳(メタデータ) (2023-08-20T14:31:55Z) - Cross-city Few-Shot Traffic Forecasting via Traffic Pattern Bank [15.123457772023238]
交通パターンバンク(TPB)を用いた都市間交通予測フレームワークを提案する。
TPBは、訓練済みのトラフィックパッチエンコーダを使用して、データ豊富な都市からの生のトラフィックデータを高次元空間に投影する。
隣接行列は、下流の時空間モデルで将来のトラフィックを予測するために構成される。
論文 参考訳(メタデータ) (2023-08-17T13:29:57Z) - Traffic Prediction with Transfer Learning: A Mutual Information-based
Approach [11.444576186559487]
そこで我々は,他の都市からのビッグデータを用いて交通予測を行う都市間交通予測手法であるTrafficTLを提案する。
TrafficTLは3つの実世界のデータセットの包括的なケーススタディによって評価され、最先端のベースラインを約8~25%上回る。
論文 参考訳(メタデータ) (2023-03-13T15:27:07Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
我々はスイスのチューリッヒの都市ネットワーク内の地域でビデオ計測による実験キャンペーンを組織した。
我々は,既存のサーマルカメラからの測定を確実にすることで,交通の流れや走行時間の観点からの交通状況の把握に注力する。
本稿では,様々なデータソースの融合による移動時間を推定するために,単純かつ効率的な多重線形回帰(MLR)モデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T08:13:57Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
歩行者と自転車の軌跡のデータセットであるEuro-PVIを提案する。
本研究では,都市環境におけるエージェント間のマルチモーダル共有潜在空間を表現的に学習する共同推論モデルを開発する。
我々は,エゴ車と歩行者(自転車)の相互作用を正確に予測するために捉えることの重要性を示すnuScenesとEuro-PVIデータセット上での成果を達成した。
論文 参考訳(メタデータ) (2021-06-22T15:40:21Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
交通信号の制御は、都市部の交通渋滞の緩和に必要不可欠である。
問題モデリングの複雑さが高いため、現在の作業の実験的な設定はしばしば矛盾する。
エンコーダ・デコーダ構造を用いた深層強化学習に基づく新規で強力なベースラインモデルを提案する。
論文 参考訳(メタデータ) (2021-01-24T03:55:39Z) - Traffic Modelling and Prediction via Symbolic Regression on Road Sensor
Data [0.8602553195689513]
本稿では,ラグ演算子により強化されたシンボル回帰に基づく,新しいかつ正確な交通流予測手法を提案する。
提案手法は都市道路の複雑度に適したロバストモデルであり,高速道路よりも予測が困難である。
論文 参考訳(メタデータ) (2020-02-14T16:03:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。