論文の概要: Three Disclaimers for Safe Disclosure: A Cardwriter for Reporting the Use of Generative AI in Writing Process
- arxiv url: http://arxiv.org/abs/2404.09041v1
- Date: Sat, 13 Apr 2024 16:55:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 17:34:10.176749
- Title: Three Disclaimers for Safe Disclosure: A Cardwriter for Reporting the Use of Generative AI in Writing Process
- Title(参考訳): 安全な開示のための3つのディファイラ: 生成AIの書き込みプロセスにおける使用を報告するためのカードライタ
- Authors: Won Ik Cho, Eunjung Cho, Hyeonji Shin,
- Abstract要約: 『カードライター』は、執筆過程における生成AIの使用を宣言する短い報告書を執筆者に向けて作成する。
デモはhttps://cardwriter.vercel.app.comで公開されている。
- 参考スコア(独自算出の注目度): 4.358289251981747
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Generative artificial intelligence (AI) and large language models (LLMs) are increasingly being used in the academic writing process. This is despite the current lack of unified framework for reporting the use of machine assistance. In this work, we propose "Cardwriter", an intuitive interface that produces a short report for authors to declare their use of generative AI in their writing process. The demo is available online, at https://cardwriter.vercel.app
- Abstract(参考訳): 生成的人工知能(AI)と大規模言語モデル(LLM)は、学術的な執筆プロセスにおいてますます使われている。
これは、現在、マシンアシストの使用を報告するための統一されたフレームワークが欠如しているにもかかわらずである。
本研究では,著者が生成AIを記述プロセスで使用することを宣言するための短いレポートを生成する直感的なインタフェースである"Cardwriter"を提案する。
デモは、https://cardwriter.vercel.app.comで公開されている。
関連論文リスト
- LLM-DetectAIve: a Tool for Fine-Grained Machine-Generated Text Detection [87.43727192273772]
テキストが人間の書いたものなのか、機械で作られたものなのかを判断するのは、しばしば困難である。
細粒度検出のためのLLM-DetectAIveを提案する。
i) 人書き、ii) 機械生成、(iii) 機械書、次いで機械書、(iv) 人書き、そして機械ポリッシュの4つのカテゴリをサポートする。
論文 参考訳(メタデータ) (2024-08-08T07:43:17Z) - Dialogue with Robots: Proposals for Broadening Participation and Research in the SLIVAR Community [57.56212633174706]
自然言語を使って機械と対話する能力は一般的なものになりつつあるが、期待されている。
本稿では,ロボットとの音声対話のこの成長分野の最近の歴史を詳述する。
私たちはコミュニティに3つの提案を提供しています。ひとつは教育、もうひとつはベンチマーク、もうひとつはロボットとの会話に関する言語モデリングです。
論文 参考訳(メタデータ) (2024-04-01T15:03:27Z) - Perceptions and Detection of AI Use in Manuscript Preparation for
Academic Journals [1.881901067333374]
大規模言語モデル(LLM)は、AIが学術的な文章にどのように影響するかを興奮と心配の両方を生み出している。
学術出版物の著者は、原稿の改訂に使用するAIツールを自発的に開示するかもしれない。
ジャーナルやカンファレンスは、開示を義務付けるか、あるいは検出サービスを使用するようにします。
論文 参考訳(メタデータ) (2023-11-19T06:04:46Z) - PaperCard for Reporting Machine Assistance in Academic Writing [48.33722012818687]
2022年11月にOpenAIが発表した質問応答システムChatGPTは,学術論文作成に活用可能な,さまざまな機能を実証した。
これは学術における著者概念に関する批判的な疑問を提起する。
我々は、人間の著者が記述プロセスにおけるAIの使用を透過的に宣言するための文書である"PaperCard"というフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-07T14:28:04Z) - A LLM Assisted Exploitation of AI-Guardian [57.572998144258705]
IEEE S&P 2023で発表された敵に対する最近の防衛であるAI-Guardianの堅牢性を評価する。
我々は、このモデルを攻撃するためのコードを書かず、代わりに、GPT-4に命令とガイダンスに従って全ての攻撃アルゴリズムを実装するよう促します。
このプロセスは驚くほど効果的で効率的であり、言語モデルでは、この論文の著者が実行したよりも高速に曖昧な命令からコードを生成することもあった。
論文 参考訳(メタデータ) (2023-07-20T17:33:25Z) - The Future of AI-Assisted Writing [0.0]
我々は、情報検索レンズ(プル・アンド・プッシュ)を用いて、そのようなツールの比較ユーザスタディを行う。
我々の研究結果によると、ユーザーは執筆におけるAIのシームレスな支援を歓迎している。
ユーザはAI支援の書き込みツールとのコラボレーションも楽しんだが、オーナシップの欠如を感じなかった。
論文 参考訳(メタデータ) (2023-06-29T02:46:45Z) - Generative AI: Implications and Applications for Education [0.0]
2022年11月のChatGPTの打ち上げは、一部の教育者の間でパニックを巻き起こし、他者からの資格ある熱意を喚起した。
Generative AIという抽象用語の下では、ChatGPTはコンピュータ生成テキスト、画像、その他のデジタルメディアを配信するための様々な技術の例である。
論文 参考訳(メタデータ) (2023-05-12T16:52:38Z) - AI Usage Cards: Responsibly Reporting AI-generated Content [25.848910414962337]
ChatGPTのようなAIシステムが、人間による作業と区別できないコンテンツを生成できることを考えると、この技術の責任を負うことが懸念される。
我々は、AIの責任ある使用を定義するために、透明性、完全性、説明責任からなる3次元モデルを提案する。
第2に、科学研究におけるAIの使用を報告するための標準化された方法である「AI Usage Cards」を紹介する。
論文 参考訳(メタデータ) (2023-02-16T08:41:31Z) - Effidit: Your AI Writing Assistant [60.588370965898534]
Effiditは、人工知能(AI)技術を使用して、ユーザーが高品質なテキストをより効率的に書けるようにするためのデジタルライティングアシスタントである。
Effiditでは、テキスト補完、エラーチェック、テキスト研磨、キーワード・トゥ・センテンス(K2S)、クラウド・インプット・メソッド(クラウドIME)の5つのカテゴリで機能を提供することで、筆記アシスタントの能力を大幅に拡大する。
論文 参考訳(メタデータ) (2022-08-03T02:24:45Z) - MONAI Label: A framework for AI-assisted Interactive Labeling of 3D
Medical Images [49.664220687980006]
注釈付きデータセットの欠如は、タスク固有の教師付き機械学習モデルをトレーニングする上で、大きなボトルネックとなる。
本稿では,人工知能(AI)モデルに基づくアプリケーション開発を支援する,フリーかつオープンソースなフレームワークであるmonAI Labelを紹介する。
論文 参考訳(メタデータ) (2022-03-23T12:33:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。