Skyrmion-mechanical hybrid quantum systems: Manipulation of skyrmion qubits via phonons
- URL: http://arxiv.org/abs/2404.09390v1
- Date: Mon, 15 Apr 2024 00:22:09 GMT
- Title: Skyrmion-mechanical hybrid quantum systems: Manipulation of skyrmion qubits via phonons
- Authors: Xue-Feng Pan, Xin-Lei Hei, Xiao-Yu Yao, Jia-Qiang Chen, Yu-Meng Ren, Xing-Liang Dong, Yi-Fan Qiao, Peng-Bo Li,
- Abstract summary: We propose a hybrid quantum setup with skyrmion qubits strongly coupled to nanomechanical cantilevers via magnetic coupling.
A linear drive is utilized to achieve the modulation of the stiffness coefficient of the cantilever.
We also consider the case of a topological resonator array, which allows us to study interactions between skyrmion qubits and topological phonon band structure.
- Score: 4.057124226007073
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Skyrmion qubits are a new highly promising logic element for quantum information processing. However, their scalability to multiple interacting qubits remains challenging. We propose a hybrid quantum setup with skyrmion qubits strongly coupled to nanomechanical cantilevers via magnetic coupling, which harnesses phonons as quantum interfaces for the manipulation of distant skyrmion qubits. A linear drive is utilized to achieve the modulation of the stiffness coefficient of the cantilever, resulting in an exponential enhancement of the coupling strength between the skyrmion qubit and the mechanical mode. We also consider the case of a topological resonator array, which allows us to study interactions between skyrmion qubits and topological phonon band structure, as well as chiral skyrmion-skyrmion interactions. The scheme suggested here offers a fascinating platform for investigating quantum information processing and quantum simulation with magnetic microstructures.
Related papers
- Colloquium: Quantum Properties and Functionalities of Magnetic Skyrmions [40.282478038074984]
Competing magnetic interactions may stabilize smooth magnetization textures that can be characterized by a topological winding number.
Such textures, which are spatially localized within a two-dimensional plane, are commonly known as skyrmions.
This Colloquium considers quantum effects associated with skyrmion textures: their theoretical origins, the experimental and material challenges associated with their detection, and the promise of exploiting them for quantum operations.
arXiv Detail & Related papers (2024-10-15T09:27:20Z) - Magnon-Skyrmion Hybrid Quantum Systems: Tailoring Interactions via Magnons [0.22436328017044366]
We propose and analyze a magnon-skyrmion hybrid quantum system, consisting of a micromagnet and nearby magnetic skyrmions.
We show that with this hybrid setup it is possible to induce magnon-mediated nonreciprocal interactions and responses between distant skyrmion qubits or between skyrmion qubits and other quantum systems like superconducting qubits.
arXiv Detail & Related papers (2024-04-15T00:19:23Z) - Skyrmion Qubits: Challenges For Future Quantum Computing Applications [0.0]
Magnetic nano-skyrmions develop quantized helicity excitations.
Quantum tunneling between nano-skyrmions possessing distinct helicities is indicative of the quantum nature of these particles.
This Perspective aims to discuss developments and challenges in this new research avenue in quantum magnetism and quantum information.
arXiv Detail & Related papers (2024-01-08T09:51:14Z) - Stability of a quantum skyrmion: projective measurements and the quantum
Zeno effect [0.0]
Magnetic skyrmions are vortex-like quasiparticles characterized by long lifetime and remarkable topological properties.
We theoretically analyze the dynamics of a quantum skyrmion subject to local projective measurements.
We show that by performing repetitive measurements on a quantum skyrmion, it can be completely stabilized through an analog of the quantum Zeno effect.
arXiv Detail & Related papers (2023-08-21T20:03:25Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Skyrmion Qubits: A New Class of Quantum Logic Elements Based on
Nanoscale Magnetization [0.0]
We introduce a new class of primitive building blocks for realizing quantum logic elements based on nanoscale magnetization textures called skyrmions.
In a skyrmion qubit, information is stored in the quantum degree of helicity, and the logical states can be adjusted by electric and magnetic fields.
arXiv Detail & Related papers (2021-08-04T18:00:04Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.