論文の概要: Graph neural network-based surrogate modelling for real-time hydraulic prediction of urban drainage networks
- arxiv url: http://arxiv.org/abs/2404.10324v1
- Date: Tue, 16 Apr 2024 07:08:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 17:43:04.136264
- Title: Graph neural network-based surrogate modelling for real-time hydraulic prediction of urban drainage networks
- Title(参考訳): 都市排水網のリアルタイム油圧予測のためのグラフニューラルネットワークに基づく代理モデル
- Authors: Zhiyu Zhang, Chenkaixiang Lu, Wenchong Tian, Zhenliang Liao, Zhiguo Yuan,
- Abstract要約: 物理モデルに基づくモデルは、計算に時間がかかり、都市排水網のリアルタイムシナリオには有効ではない。
完全に接続されたニューラルネットワーク(NN)は、潜在的な代理モデルであるが、複雑なターゲットに適合する際の解釈可能性と効率の低下に悩まされる可能性がある。
本研究は, 排水網の水理予測問題に対する流路モデルのGNNに基づくサロゲートを提案する。
- 参考スコア(独自算出の注目度): 1.8073031015436376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-based models are computationally time-consuming and infeasible for real-time scenarios of urban drainage networks, and a surrogate model is needed to accelerate the online predictive modelling. Fully-connected neural networks (NNs) are potential surrogate models, but may suffer from low interpretability and efficiency in fitting complex targets. Owing to the state-of-the-art modelling power of graph neural networks (GNNs) and their match with urban drainage networks in the graph structure, this work proposes a GNN-based surrogate of the flow routing model for the hydraulic prediction problem of drainage networks, which regards recent hydraulic states as initial conditions, and future runoff and control policy as boundary conditions. To incorporate hydraulic constraints and physical relationships into drainage modelling, physics-guided mechanisms are designed on top of the surrogate model to restrict the prediction variables with flow balance and flooding occurrence constraints. According to case results in a stormwater network, the GNN-based model is more cost-effective with better hydraulic prediction accuracy than the NN-based model after equal training epochs, and the designed mechanisms further limit prediction errors with interpretable domain knowledge. As the model structure adheres to the flow routing mechanisms and hydraulic constraints in urban drainage networks, it provides an interpretable and effective solution for data-driven surrogate modelling. Simultaneously, the surrogate model accelerates the predictive modelling of urban drainage networks for real-time use compared with the physics-based model.
- Abstract(参考訳): 物理に基づくモデルは、都市排水網のリアルタイムシナリオにおいて計算に時間を要するため、オンライン予測モデルの高速化には代理モデルが必要である。
完全に接続されたニューラルネットワーク(NN)は、潜在的な代理モデルであるが、複雑なターゲットに適合する際の解釈可能性と効率の低下に悩まされる可能性がある。
グラフニューラルネットワーク(GNN)の最先端モデリング能力と,そのグラフ構造における都市排水網との整合性から,近年の油圧状態を初期条件とみなす排水網の水圧予測問題に対するGNNに基づくフロールーティングモデルのサロゲートと,今後の流出制御方針を境界条件として提案する。
水理的制約と物理的関係をドレインモデルに組み込むため,サロゲートモデル上に物理誘導機構を設計し,流量バランスと洪水発生制約による予測変数の制限を行う。
ストームウォーターネットワークの事例から,GNNモデルの方が,等速訓練後のNNモデルよりも高い油圧予測精度でコスト効率が向上し,解釈可能なドメイン知識による予測誤差をさらに制限する機構が考えられた。
モデル構造は都市排水網の流動経路機構と水理制約に固執するので,データ駆動サロゲートモデリングのための解釈可能かつ効果的なソリューションを提供する。
同時に、代理モデルにより、物理モデルと比較して都市排水網の予測モデルがリアルタイムで使用されるように加速される。
関連論文リスト
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Deep Vision-Based Framework for Coastal Flood Prediction Under Climate Change Impacts and Shoreline Adaptations [0.3413711585591077]
低データ環境下での高忠実度ディープビジョンに基づく沿岸洪水予測モデルを訓練するための体系的枠組みを提案する。
また,沿岸の洪水予測問題に特化して,CNNの深部構造を導入している。
開発したDLモデルの性能は、一般に採用されている測地回帰法に対して検証される。
論文 参考訳(メタデータ) (2024-06-06T19:54:34Z) - Toward Routing River Water in Land Surface Models with Recurrent Neural Networks [0.0]
陸面モデル(LSM)における河川ルーティングのためのリカレントニューラルネットワーク(RNN)の性能について検討する。
観測された降水の代わりに、LSM-RNNは物理モデルから計算された瞬時流出を入力として使用する。
LSM-RNNの予測と既存の物理モデルとの類似したデータセットを比較し,LSM-RNNが物理モデルより優れていることを示す。
論文 参考訳(メタデータ) (2024-04-22T14:21:37Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Physics-Informed Graph Neural Network for Spatial-temporal Production
Forecasting [0.0]
歴史的データに基づく生産予測は、炭化水素資源の開発に不可欠な価値を提供する。
生産予測のためのグリッドフリーな物理インフォームドグラフニューラルネットワーク(PI-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T23:28:40Z) - STDEN: Towards Physics-Guided Neural Networks for Traffic Flow
Prediction [31.49270000605409]
物理原理とデータ駆動モデルの統合の欠如は、この分野の開発を制限する重要な理由である。
本稿では,交通流力学の物理機構を深層ニューラルネットワークの枠組みに組み込む,時空間微分方程式ネットワーク(STDEN)という物理誘導型ディープラーニングモデルを提案する。
北京の3つの実世界の交通データセットの実験では、我々のモデルは最先端のベースラインをかなり上回っている。
論文 参考訳(メタデータ) (2022-09-01T04:58:18Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Accelerating hydrodynamic simulations of urban drainage systems with
physics-guided machine learning [0.0]
本研究では,物理誘導機械学習に基づく都市排水系油圧の高速かつ高精度な代理モデル構築手法を提案する。
提案手法は,HiFiモデルと比較してシミュレーション時間を1~2桁に短縮する。
したがって、概念的水理モデルよりも遅いが、全てのノードにおける水位、流れ、電荷のシミュレーションと排水網のリンクを可能にする。
論文 参考訳(メタデータ) (2022-05-24T19:44:46Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
深層学習と物理運動モデルを組み合わせたハイブリッドアプローチを提案する。
ハイブリッドモデルの一部として,ディープニューラルネットワークの出力範囲を制限することで,解釈可能性を実現する。
その結果, ハイブリッドモデルでは, 既存のディープラーニング手法に比べて精度を低下させることなく, モデル解釈性が向上できることがわかった。
論文 参考訳(メタデータ) (2021-03-11T15:21:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。