Top-k Multi-Armed Bandit Learning for Content Dissemination in Swarms of Micro-UAVs
- URL: http://arxiv.org/abs/2404.10845v1
- Date: Tue, 16 Apr 2024 18:47:07 GMT
- Title: Top-k Multi-Armed Bandit Learning for Content Dissemination in Swarms of Micro-UAVs
- Authors: Amit Kumar Bhuyan, Hrishikesh Dutta, Subir Biswas,
- Abstract summary: In communication-deprived disaster scenarios, this paper introduces a Micro-Unmanned Aerial Vehicle (UAV)- enhanced content management system.
In the absence of cellular infrastructure, this system deploys a hybrid network of stationary and mobile UAVs to offer vital content access to isolated communities.
The primary goal is to devise an adaptive content dissemination system that dynamically learns caching policies to maximize content accessibility.
- Score: 2.3076690318595676
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In communication-deprived disaster scenarios, this paper introduces a Micro-Unmanned Aerial Vehicle (UAV)- enhanced content management system. In the absence of cellular infrastructure, this system deploys a hybrid network of stationary and mobile UAVs to offer vital content access to isolated communities. Static anchor UAVs equipped with both vertical and lateral links cater to local users, while agile micro-ferrying UAVs, equipped with lateral links and greater mobility, reach users in various communities. The primary goal is to devise an adaptive content dissemination system that dynamically learns caching policies to maximize content accessibility. The paper proposes a decentralized Top-k Multi-Armed Bandit (Top-k MAB) learning approach for UAV caching decisions, accommodating geotemporal disparities in content popularity and diverse content demands. The proposed mechanism involves a Selective Caching Algorithm that algorithmically reduces redundant copies of the contents by leveraging the shared information between the UAVs. It is demonstrated that Top-k MAB learning, along with selective caching algorithm, can improve system performance while making the learning process adaptive. The paper does functional verification and performance evaluation of the proposed caching framework under a wide range of network size, swarm of micro-ferrying UAVs, and heterogeneous popularity distributions.
Related papers
- Multi-Agent Reinforcement Learning for Offloading Cellular Communications with Cooperating UAVs [21.195346908715972]
Unmanned aerial vehicles present an alternative means to offload data traffic from terrestrial BSs.
This paper presents a novel approach to efficiently serve multiple UAVs for data offloading from terrestrial BSs.
arXiv Detail & Related papers (2024-02-05T12:36:08Z) - Multi-Armed Bandit Learning for Content Provisioning in Network of UAVs [2.3076690318595676]
This paper proposes an unmanned aerial vehicle (UAV) aided content management system in communication-challenged disaster scenarios.
Without cellular infrastructure in such scenarios, community of stranded users can be provided access to situation-critical contents using a hybrid network of static and traveling UAVs.
A set of relatively static anchor UAVs can download content from central servers and provide content access to its local users.
A set of ferrying UAVs with wider mobility can provision content to users by shuffling them across different anchor UAVs while visiting different communities of users.
arXiv Detail & Related papers (2023-12-18T15:24:01Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
Federated edge learning (FEEL) enables privacy-preserving model training through periodic communication between edge devices and the server.
Unmanned Aerial Vehicle (UAV)mounted edge devices are particularly advantageous for FEEL due to their flexibility and mobility in efficient data collection.
arXiv Detail & Related papers (2023-06-05T16:01:33Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
We present a Semi-supervised Federated Learning (SSFL) framework for privacy-preserving UAV image recognition.
There are significant differences in the number, features, and distribution of local data collected by UAVs using different camera modules.
We propose an aggregation rule based on the frequency of the client's participation in training, namely the FedFreq aggregation rule.
arXiv Detail & Related papers (2022-01-03T16:49:33Z) - Distributed Reinforcement Learning for Privacy-Preserving Dynamic Edge
Caching [91.50631418179331]
A privacy-preserving distributed deep policy gradient (P2D3PG) is proposed to maximize the cache hit rates of devices in the MEC networks.
We convert the distributed optimizations into model-free Markov decision process problems and then introduce a privacy-preserving federated learning method for popularity prediction.
arXiv Detail & Related papers (2021-10-20T02:48:27Z) - UAV-assisted Online Machine Learning over Multi-Tiered Networks: A
Hierarchical Nested Personalized Federated Learning Approach [25.936914508952086]
We consider distributed machine learning (ML) through unmanned aerial vehicles (UAVs) for geo-distributed device clusters.
We propose five new technologies/techniques: (i) stratified UAV swarms with leader, worker, and coordinator UAVs, (ii) hierarchical nested personalized federated learning (HN-PFL), and (iii) cooperative UAV resource pooling for distributed ML using the UAVs' local computational capabilities.
arXiv Detail & Related papers (2021-06-29T21:40:28Z) - A Deep Value-network Based Approach for Multi-Driver Order Dispatching [55.36656442934531]
We propose a deep reinforcement learning based solution for order dispatching.
We conduct large scale online A/B tests on DiDi's ride-dispatching platform.
Results show that CVNet consistently outperforms other recently proposed dispatching methods.
arXiv Detail & Related papers (2021-06-08T16:27:04Z) - Distributed CNN Inference on Resource-Constrained UAVs for Surveillance
Systems: Design and Optimization [43.9909417652678]
Unmanned Aerial Vehicles (UAVs) have attracted great interest in the last few years owing to their ability to cover large areas and access difficult and hazardous target zones.
Thanks to the advancements in computer vision and machine learning, UAVs are being adopted for a broad range of solutions and applications.
Deep Neural Networks (DNNs) are progressing toward deeper and complex models that prevent them from being executed on-board.
arXiv Detail & Related papers (2021-05-23T20:19:43Z) - Caching Placement and Resource Allocation for Cache-Enabling UAV NOMA
Networks [87.6031308969681]
This article investigates the cache-enabling unmanned aerial vehicle (UAV) cellular networks with massive access capability supported by non-orthogonal multiple access (NOMA)
We formulate the long-term caching placement and resource allocation optimization problem for content delivery delay minimization as a Markov decision process (MDP)
We propose a Q-learning based caching placement and resource allocation algorithm, where the UAV learns and selects action with emphsoft $varepsilon$-greedy strategy to search for the optimal match between actions and states.
arXiv Detail & Related papers (2020-08-12T08:33:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.