論文の概要: Event-Based Eye Tracking. AIS 2024 Challenge Survey
- arxiv url: http://arxiv.org/abs/2404.11770v1
- Date: Wed, 17 Apr 2024 21:53:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 20:00:41.790945
- Title: Event-Based Eye Tracking. AIS 2024 Challenge Survey
- Title(参考訳): AIS 2024 チャレンジサーベイ
- Authors: Zuowen Wang, Chang Gao, Zongwei Wu, Marcos V. Conde, Radu Timofte, Shih-Chii Liu, Qinyu Chen, Zheng-jun Zha, Wei Zhai, Han Han, Bohao Liao, Yuliang Wu, Zengyu Wan, Zhong Wang, Yang Cao, Ganchao Tan, Jinze Chen, Yan Ru Pei, Sasskia Brüers, Sébastien Crouzet, Douglas McLelland, Oliver Coenen, Baoheng Zhang, Yizhao Gao, Jingyuan Li, Hayden Kwok-Hay So, Philippe Bich, Chiara Boretti, Luciano Prono, Mircea Lică, David Dinucu-Jianu, Cătălin Grîu, Xiaopeng Lin, Hongwei Ren, Bojun Cheng, Xinan Zhang, Valentin Vial, Anthony Yezzi, James Tsai,
- Abstract要約: AIS 2024 Event-Based Eye Tracking (EET) Challengeをレビューする。
この課題の課題は、イベントカメラで記録された眼球運動の処理と瞳孔中心の予測である。
この課題は、タスクの精度と効率のトレードオフを達成するために、イベントカメラによる効率的なアイトラッキングを強調している。
- 参考スコア(独自算出の注目度): 73.41168445057629
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This survey reviews the AIS 2024 Event-Based Eye Tracking (EET) Challenge. The task of the challenge focuses on processing eye movement recorded with event cameras and predicting the pupil center of the eye. The challenge emphasizes efficient eye tracking with event cameras to achieve good task accuracy and efficiency trade-off. During the challenge period, 38 participants registered for the Kaggle competition, and 8 teams submitted a challenge factsheet. The novel and diverse methods from the submitted factsheets are reviewed and analyzed in this survey to advance future event-based eye tracking research.
- Abstract(参考訳): AIS 2024 Event-Based Eye Tracking (EET) Challengeをレビューする。
この課題の課題は、イベントカメラで記録された眼球運動の処理と瞳孔中心の予測である。
この課題は、タスクの精度と効率のトレードオフを達成するために、イベントカメラによる効率的なアイトラッキングを強調している。
チャレンジ期間中に38人がカグル大会に出場し、8チームが挑戦ファクトシートを提出した。
提出されたファクトシートからの新しい多種多様な手法を概説し,今後の事象追跡研究を推進すべく分析を行った。
関連論文リスト
- Overview of AI-Debater 2023: The Challenges of Argument Generation Tasks [62.443665295250035]
第2023回中国影響コンピューティング会議(CCAC 2023)におけるAI-Debater 2023チャレンジの結果を提示する。
合計で32のチームがチャレンジに登録し、そこから11の応募をもらいました。
論文 参考訳(メタデータ) (2024-07-20T10:13:54Z) - V3Det Challenge 2024 on Vast Vocabulary and Open Vocabulary Object Detection: Methods and Results [142.5704093410454]
V3Det Challenge 2024は、オブジェクト検出研究の境界を推し進めることを目的としている。
Vast Vocabulary Object DetectionとOpen Vocabulary Object Detectionの2つのトラックで構成されている。
我々は,広い語彙とオープン語彙のオブジェクト検出において,今後の研究の方向性を刺激することを目指している。
論文 参考訳(メタデータ) (2024-06-17T16:58:51Z) - The 8th AI City Challenge [57.25825945041515]
2024年版では5トラックが収録され、47か国と地域の726チームから前例のない関心を集めた。
このチャレンジでは、2つのリーダーボードを使ってメソッドを展示し、参加者は新しいベンチマークを設定した。
論文 参考訳(メタデータ) (2024-04-15T03:12:17Z) - SoccerNet 2022 Challenges Results [167.6158475931228]
SoccerNet 2022 チャレンジ(英語: SoccerNet 2022 Challenge)は、サッカーネットチームが主催する2回目のビデオ理解チャレンジである。
2022年、課題は6つの視覚ベースのタスクで構成された。
昨年の課題と比較すると、タスク(1-2)は、より厳密な時間的アキュラシーを検討するために評価基準を再定義し、基礎となるデータやアノテーションを含むタスク(3-6)は新しくなった。
論文 参考訳(メタデータ) (2022-10-05T16:12:50Z) - Multi-Forgery Detection Challenge 2022: Push the Frontier of
Unconstrained and Diverse Forgery Detection [38.94229864198983]
このチャレンジは世界中から674のチームが参加し、2000の有効な結果が得られた。
本稿では,画像偽造検出の分野での研究を促進すべく,トップ3チームからのソリューションを提示する。
論文 参考訳(メタデータ) (2022-07-27T13:15:54Z) - Woodscape Fisheye Object Detection for Autonomous Driving -- CVPR 2022
OmniCV Workshop Challenge [2.9129796077742824]
WoodScape fisheye object detection challenge for autonomous drivingはCVPR 2022 Workshop on Omnidirectional Computer Visionの一部として開催された。
我々は、120のグローバルチームと合計1492の応募を惹きつけた競技について、詳細な分析を行った。
論文 参考訳(メタデータ) (2022-06-26T16:07:37Z) - The 6th AI City Challenge [91.65782140270152]
2022年のAIシティチャレンジの4つのチャレンジトラックは、27カ国254チームからの参加要請を受けた。
参加チームのトップパフォーマンスは強いベースラインを確立し、提案されたチャレンジトラックで最先端の成績を上げました。
論文 参考訳(メタデータ) (2022-04-21T19:24:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。