論文の概要: X-Light: Cross-City Traffic Signal Control Using Transformer on Transformer as Meta Multi-Agent Reinforcement Learner
- arxiv url: http://arxiv.org/abs/2404.12090v1
- Date: Thu, 18 Apr 2024 11:17:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 12:41:30.592308
- Title: X-Light: Cross-City Traffic Signal Control Using Transformer on Transformer as Meta Multi-Agent Reinforcement Learner
- Title(参考訳): X-Light: 変圧器上の変圧器をメタマルチエージェント強化学習器として用いた都市横断信号制御
- Authors: Haoyuan Jiang, Ziyue Li, Hua Wei, Xuantang Xiong, Jingqing Ruan, Jiaming Lu, Hangyu Mao, Rui Zhao,
- Abstract要約: X-Light という名前の都市間メタマルチエージェント信号制御のための Transformer on Transformer (TonT) モデルを提案する。
目に見えないシナリオに直接移行する場合、平均で+7.91%、場合によっては+16.3%のベースラインメソッドを超越する。
- 参考スコア(独自算出の注目度): 14.134128926121711
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The effectiveness of traffic light control has been significantly improved by current reinforcement learning-based approaches via better cooperation among multiple traffic lights. However, a persisting issue remains: how to obtain a multi-agent traffic signal control algorithm with remarkable transferability across diverse cities? In this paper, we propose a Transformer on Transformer (TonT) model for cross-city meta multi-agent traffic signal control, named as X-Light: We input the full Markov Decision Process trajectories, and the Lower Transformer aggregates the states, actions, rewards among the target intersection and its neighbors within a city, and the Upper Transformer learns the general decision trajectories across different cities. This dual-level approach bolsters the model's robust generalization and transferability. Notably, when directly transferring to unseen scenarios, ours surpasses all baseline methods with +7.91% on average, and even +16.3% in some cases, yielding the best results.
- Abstract(参考訳): 交通光制御の有効性は、複数の信号機間の協調により、現在の強化学習に基づくアプローチによって著しく改善されている。
しかし、持続的な問題として、多様な都市にまたがる顕著な転送性を持つマルチエージェント交通信号制御アルゴリズムの取得方法がある。
本稿では,都市間メタマルチエージェント交通信号制御のためのトランスフォーマー(TonT)モデルを提案する。X-Light:我々はマルコフ決定プロセスの完全なトラジェクトリを入力し,ローワートランスフォーマーは,都市内における目標交差点とその周辺地域の状態,行動,報酬を集約し,アッパートランスフォーマーは,各都市間の一般的な決定トラジェクトリを学習する。
この二重レベルアプローチはモデルの堅牢な一般化と伝達可能性を促進する。
特に、目に見えないシナリオへの直接転送では、平均で+7.91%、場合によっては+16.3%のベースラインメソッドを超越し、最良の結果が得られる。
関連論文リスト
- MoveLight: Enhancing Traffic Signal Control through Movement-Centric Deep Reinforcement Learning [13.369840354712021]
MoveLightは移動中心の深層強化学習を通じて都市交通管理を強化する新しい交通信号制御システムである。
詳細なリアルタイムデータと高度な機械学習技術を活用することで、MoveLightは従来の信号制御手法の限界を克服する。
論文 参考訳(メタデータ) (2024-07-24T14:17:16Z) - Towards Multi-agent Reinforcement Learning based Traffic Signal Control through Spatio-temporal Hypergraphs [19.107744041461316]
交通信号制御システム(TSCS)は、インテリジェントな交通管理に不可欠なものであり、効率的な車両の流れを育んでいる。
従来のアプローチでは、道路網を標準的なグラフに単純化することが多い。
本稿では,インテリジェントトラフィック制御を実現するための新しいTSCSフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-17T02:46:18Z) - Emergent Agentic Transformer from Chain of Hindsight Experience [96.56164427726203]
簡単なトランスフォーマーベースモデルが時間差と模倣学習に基づくアプローチの両方と競合することを示す。
単純なトランスフォーマーベースのモデルが時間差と模倣学習ベースのアプローチの両方で競合するのはこれが初めてである。
論文 参考訳(メタデータ) (2023-05-26T00:43:02Z) - SocialLight: Distributed Cooperation Learning towards Network-Wide
Traffic Signal Control [7.387226437589183]
SocialLightは交通信号制御のための新しいマルチエージェント強化学習手法である。
地元におけるエージェントの個人的限界貢献を推定することにより、協力的な交通規制政策を学習する。
我々は,2つの交通シミュレータの標準ベンチマークにおける最先端の交通信号制御手法に対して,トレーニングネットワークをベンチマークした。
論文 参考訳(メタデータ) (2023-04-20T12:41:25Z) - TransCMD: Cross-Modal Decoder Equipped with Transformer for RGB-D
Salient Object Detection [86.94578023985677]
本研究では,グローバルな情報アライメントと変革の観点から,この課題を再考する。
具体的には、トランスCMD(TransCMD)は、複数のクロスモーダル統合ユニットをカスケードして、トップダウントランスフォーマーベースの情報伝達経路を構築する。
7つのRGB-D SODベンチマークデータセットの実験結果から、単純な2ストリームエンコーダデコーダフレームワークが、最先端のCNNベースの手法を超越できることが示されている。
論文 参考訳(メタデータ) (2021-12-04T15:45:34Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
我々はスイスのチューリッヒの都市ネットワーク内の地域でビデオ計測による実験キャンペーンを組織した。
我々は,既存のサーマルカメラからの測定を確実にすることで,交通の流れや走行時間の観点からの交通状況の把握に注力する。
本稿では,様々なデータソースの融合による移動時間を推定するために,単純かつ効率的な多重線形回帰(MLR)モデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T08:13:57Z) - Courteous Behavior of Automated Vehicles at Unsignalized Intersections
via Reinforcement Learning [30.00761722505295]
深層強化学習を用いた混在交通状況における交差点における交通流の最適化手法を提案する。
我々の強化学習エージェントは、信号のない交差点で接続された自動運転車が道路の権利を放棄し、交通の流れを最適化するために他の車両に利する、集中型制御器のポリシーを学習する。
論文 参考訳(メタデータ) (2021-06-11T13:16:48Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
画像表現とLiDAR表現を注目で統合する,新しいマルチモードフュージョントランスフォーマであるTransFuserを提案する。
本手法は, 衝突を76%低減しつつ, 最先端駆動性能を実現する。
論文 参考訳(メタデータ) (2021-04-19T11:48:13Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
交通信号制御は、交差点を横断する交通信号を調整し、地域や都市の交通効率を向上させることを目的としている。
近年,交通信号制御に深部強化学習(RL)を適用し,各信号がエージェントとみなされる有望な性能を示した。
本稿では,近隣情報を考慮した各交差点の分散化政策を潜時的に学習するメタ変動固有モチベーション(MetaVIM)RL法を提案する。
論文 参考訳(メタデータ) (2021-01-04T03:06:08Z) - IG-RL: Inductive Graph Reinforcement Learning for Massive-Scale Traffic
Signal Control [4.273991039651846]
適応的な交通信号制御のスケーリングには、状態と行動空間を扱う必要がある。
本稿では,グラフ畳み込みネットワークに基づくインダクティブグラフ強化学習(IG-RL)を紹介する。
我々のモデルは、新しい道路網、交通分布、交通体制に一般化することができる。
論文 参考訳(メタデータ) (2020-03-06T17:17:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。