論文の概要: Efficient model predictive control for nonlinear systems modelled by deep neural networks
- arxiv url: http://arxiv.org/abs/2405.10372v1
- Date: Thu, 16 May 2024 18:05:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-20 17:42:52.331262
- Title: Efficient model predictive control for nonlinear systems modelled by deep neural networks
- Title(参考訳): ディープニューラルネットワークを用いた非線形システムの効率的なモデル予測制御
- Authors: Jianglin Lan,
- Abstract要約: 本稿では、非線形性と不確実性が深層ニューラルネットワーク(NN)によってモデル化された動的システムのためのモデル予測制御(MPC)を提案する。
NN出力はシステム状態と制御入力の高次複素非線形性を含むため、MPC問題は非線形であり、リアルタイム制御では解決が難しい。
- 参考スコア(独自算出の注目度): 6.5268245109828005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a model predictive control (MPC) for dynamic systems whose nonlinearity and uncertainty are modelled by deep neural networks (NNs), under input and state constraints. Since the NN output contains a high-order complex nonlinearity of the system state and control input, the MPC problem is nonlinear and challenging to solve for real-time control. This paper proposes two types of methods for solving the MPC problem: the mixed integer programming (MIP) method which produces an exact solution to the nonlinear MPC, and linear relaxation (LR) methods which generally give suboptimal solutions but are much computationally cheaper. Extensive numerical simulation for an inverted pendulum system modelled by ReLU NNs of various sizes is used to demonstrate and compare performance of the MIP and LR methods.
- Abstract(参考訳): 本稿では,入力および状態制約下での非線形性と不確かさをディープニューラルネットワーク(NN)によってモデル化した動的システムに対するモデル予測制御(MPC)を提案する。
NN出力はシステム状態と制御入力の高次複素非線形性を含むため、MPC問題は非線形であり、リアルタイム制御では解決が難しい。
本稿では、非線形MPCの正確な解を生成する混合整数計画法(MIP)と、一般に最適化解を与えるが計算的にはるかに安価である線形緩和法(LR)の2つの方法を提案する。
様々な大きさのReLU NNをモデルとした逆振子系の大規模数値シミュレーションを用いて,MIP法とLR法の性能を実証・比較する。
関連論文リスト
- Integrating Reinforcement Learning and Model Predictive Control with Applications to Microgrids [14.389086937116582]
本研究では,強化学習とモデル予測制御(MPC)を統合し,混合力学系における最適制御問題の解法を提案する。
提案手法は, MPC手法のオンライン計算時間を著しく短縮し, 最適性ギャップが小さく, 実現可能性が高いポリシーを生成する。
論文 参考訳(メタデータ) (2024-09-17T15:17:16Z) - Two-Stage ML-Guided Decision Rules for Sequential Decision Making under Uncertainty [55.06411438416805]
SDMU (Sequential Decision Making Under Uncertainty) は、エネルギー、金融、サプライチェーンといった多くの領域において、ユビキタスである。
いくつかのSDMUは、自然にマルチステージ問題(MSP)としてモデル化されているが、結果として得られる最適化は、計算の観点からは明らかに困難である。
本稿では,2段階の一般決定規則(TS-GDR)を導入し,線形関数を超えて政策空間を一般化する手法を提案する。
TS-GDRの有効性は、TS-LDR(Two-Stage Deep Decision Rules)と呼ばれるディープリカレントニューラルネットワークを用いたインスタンス化によって実証される。
論文 参考訳(メタデータ) (2024-05-23T18:19:47Z) - MPC of Uncertain Nonlinear Systems with Meta-Learning for Fast Adaptation of Neural Predictive Models [6.031205224945912]
ニューラル状態空間モデル(NSSM)は、ディープエンコーダネットワークがデータから非線形性を学ぶ非線形系を近似するために用いられる。
これにより非線形系を潜在空間の線形系に変換し、モデル予測制御(MPC)を用いて効果的な制御動作を決定する。
論文 参考訳(メタデータ) (2024-04-18T11:29:43Z) - Parameter-Adaptive Approximate MPC: Tuning Neural-Network Controllers without Retraining [50.00291020618743]
この研究は、大規模なデータセットを再計算し、再トレーニングすることなくオンラインチューニングが可能な、新しいパラメータ適応型AMPCアーキテクチャを導入している。
資源制約の厳しいマイクロコントローラ(MCU)を用いた2種類の実カートポールシステムの揺らぎを制御し,パラメータ適応型AMPCの有効性を示す。
これらの貢献は、現実世界のシステムにおけるAMPCの実践的応用に向けた重要な一歩である。
論文 参考訳(メタデータ) (2024-04-08T20:02:19Z) - Approximate non-linear model predictive control with safety-augmented neural networks [7.670727843779155]
本稿では、ニューラルネットワーク(NN)によるモデル予測制御(MPC)制御の近似を行い、高速なオンライン評価を実現する。
我々は,近似不正確性にもかかわらず,収束性や制約満足度を決定論的に保証する安全性向上を提案する。
論文 参考訳(メタデータ) (2023-04-19T11:27:06Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - Training Recurrent Neural Networks by Sequential Least Squares and the
Alternating Direction Method of Multipliers [0.20305676256390928]
本稿では、最適隠れネットワークパラメータを決定するために凸と2倍の差分損失と正規化項を用いることを提案する。
逐次最小二乗と交互方向乗算器を組み合わせる。
このアルゴリズムの性能は非線形システム同定ベンチマークで検証される。
論文 参考訳(メタデータ) (2021-12-31T08:43:04Z) - Joint Deep Reinforcement Learning and Unfolding: Beam Selection and
Precoding for mmWave Multiuser MIMO with Lens Arrays [54.43962058166702]
離散レンズアレイを用いたミリ波マルチユーザマルチインプット多重出力(MU-MIMO)システムに注目が集まっている。
本研究では、DLA を用いた mmWave MU-MIMO システムのビームプリコーディング行列の共同設計について検討する。
論文 参考訳(メタデータ) (2021-01-05T03:55:04Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。