Synthetic Participatory Planning of Shard Automated Electric Mobility Systems
- URL: http://arxiv.org/abs/2404.12317v4
- Date: Sun, 7 Jul 2024 21:56:23 GMT
- Title: Synthetic Participatory Planning of Shard Automated Electric Mobility Systems
- Authors: Jiangbo Yu, Graeme McKinley,
- Abstract summary: This paper introduces a novel synthetic participatory method that critically leverages large language models (LLMs) to create digital avatars.
These calibratable agents collaboratively identify objectives, envision and evaluate SAEMS alternatives, and strategize implementation under risks and constraints.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unleashing the synergies among rapidly evolving mobility technologies in a multi-stakeholder setting presents unique challenges and opportunities for addressing urban transportation problems. This paper introduces a novel synthetic participatory method that critically leverages large language models (LLMs) to create digital avatars representing diverse stakeholders to plan shared automated electric mobility systems (SAEMS). These calibratable agents collaboratively identify objectives, envision and evaluate SAEMS alternatives, and strategize implementation under risks and constraints. The results of a Montreal case study indicate that a structured and parameterized workflow provides outputs with higher controllability and comprehensiveness on an SAEMS plan than that generated using a single LLM-enabled expert agent. Consequently, this approach provides a promising avenue for cost-efficiently improving the inclusivity and interpretability of multi-objective transportation planning, suggesting a paradigm shift in how we envision and strategize for sustainable transportation systems.
Related papers
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.
However, they still struggle with problems requiring multi-step decision-making and environmental feedback.
We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Cooperative Multi-Agent Planning with Adaptive Skill Synthesis [16.228784877899976]
Multi-agent systems with reinforcement learning face challenges in sample efficiency, interpretability, and transferability.
We present a novel multi-agent architecture that integrates vision-language models (VLMs) with a dynamic skill library and structured communication for decentralized closed-loop decision-making.
arXiv Detail & Related papers (2025-02-14T13:23:18Z) - Simultaneous Multi-Robot Motion Planning with Projected Diffusion Models [57.45019514036948]
Simultaneous MRMP Diffusion (SMD) is a novel approach integrating constrained optimization into the diffusion sampling process to produce kinematically feasible trajectories.
The paper introduces a comprehensive MRMP benchmark to evaluate trajectory planning algorithms across scenarios with varying robot densities, obstacle complexities, and motion constraints.
arXiv Detail & Related papers (2025-02-05T20:51:28Z) - CoDriveVLM: VLM-Enhanced Urban Cooperative Dispatching and Motion Planning for Future Autonomous Mobility on Demand Systems [17.765742276150565]
CoDriveVLM is a novel framework that integrates high-fidelity simultaneous dispatching and cooperative motion planning for future Autonomous Mobility-on-Demand (AMoD) systems.
Our method harnesses Vision-Language Models (VLMs) to enhance multi-modality information processing, and this enables comprehensive dispatching and collision risk evaluation.
arXiv Detail & Related papers (2025-01-10T17:44:57Z) - MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
Large Language Models (LLMs) have demonstrated remarkable planning abilities across various domains, including robotics manipulation and navigation.
We propose a novel multi-agent LLM framework that distributes high-level planning and low-level control code generation across specialized LLM agents.
We evaluate our approach on nine RLBench tasks, including long-horizon tasks, and demonstrate its ability to solve robotics manipulation in a zero-shot setting.
arXiv Detail & Related papers (2024-11-26T17:53:44Z) - Cooperative and Asynchronous Transformer-based Mission Planning for Heterogeneous Teams of Mobile Robots [1.1049608786515839]
We propose a Cooperative and Asynchronous Transformer-based Mission Planning (CATMiP) framework to coordinate distributed decision making among agents.
We evaluate CATMiP in a 2D grid-world simulation environment and compare its performance against planning-based exploration methods.
arXiv Detail & Related papers (2024-10-08T21:14:09Z) - GenAI-powered Multi-Agent Paradigm for Smart Urban Mobility: Opportunities and Challenges for Integrating Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) with Intelligent Transportation Systems [10.310791311301962]
This paper explores the transformative potential of large language models (LLMs) and emerging Retrieval-Augmented Generation (RAG) technologies.
We propose a conceptual framework aimed at developing multi-agent systems capable of intelligently and conversationally delivering smart mobility services.
arXiv Detail & Related papers (2024-08-31T16:14:42Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
Task And Motion Planning (TAMP) is the problem of finding a solution to an automated planning problem.
We propose a general and open-source framework for modeling and benchmarking TAMP problems.
We introduce an innovative meta-technique to solve TAMP problems involving moving agents and multiple task-state-dependent obstacles.
arXiv Detail & Related papers (2024-08-11T14:57:57Z) - Large Language Model as a Catalyst: A Paradigm Shift in Base Station Siting Optimization [62.16747639440893]
Large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering.
Our proposed framework incorporates retrieval-augmented generation (RAG) to enhance the system's ability to acquire domain-specific knowledge and generate solutions.
arXiv Detail & Related papers (2024-08-07T08:43:32Z) - LLM-Assisted Light: Leveraging Large Language Model Capabilities for Human-Mimetic Traffic Signal Control in Complex Urban Environments [3.7788636451616697]
This work introduces an innovative approach that integrates Large Language Models into traffic signal control systems.
A hybrid framework that augments LLMs with a suite of perception and decision-making tools is proposed.
The findings from our simulations attest to the system's adeptness in adjusting to a multiplicity of traffic environments.
arXiv Detail & Related papers (2024-03-13T08:41:55Z) - Traj-MAE: Masked Autoencoders for Trajectory Prediction [69.7885837428344]
Trajectory prediction has been a crucial task in building a reliable autonomous driving system by anticipating possible dangers.
We propose an efficient masked autoencoder for trajectory prediction (Traj-MAE) that better represents the complicated behaviors of agents in the driving environment.
Our experimental results in both multi-agent and single-agent settings demonstrate that Traj-MAE achieves competitive results with state-of-the-art methods.
arXiv Detail & Related papers (2023-03-12T16:23:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.