Cooperative and Asynchronous Transformer-based Mission Planning for Heterogeneous Teams of Mobile Robots
- URL: http://arxiv.org/abs/2410.06372v2
- Date: Tue, 14 Jan 2025 22:43:44 GMT
- Title: Cooperative and Asynchronous Transformer-based Mission Planning for Heterogeneous Teams of Mobile Robots
- Authors: Milad Farjadnasab, Shahin Sirouspour,
- Abstract summary: We propose a Cooperative and Asynchronous Transformer-based Mission Planning (CATMiP) framework to coordinate distributed decision making among agents.<n>We evaluate CATMiP in a 2D grid-world simulation environment and compare its performance against planning-based exploration methods.
- Score: 1.1049608786515839
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cooperative mission planning for heterogeneous teams of mobile robots presents a unique set of challenges, particularly when operating under communication constraints and limited computational resources. To address these challenges, we propose the Cooperative and Asynchronous Transformer-based Mission Planning (CATMiP) framework, which leverages multi-agent reinforcement learning (MARL) to coordinate distributed decision making among agents with diverse sensing, motion, and actuation capabilities, operating under sporadic ad hoc communication. A Class-based Macro-Action Decentralized Partially Observable Markov Decision Process (CMacDec-POMDP) is also formulated to effectively model asynchronous decision-making for heterogeneous teams of agents. The framework utilizes an asynchronous centralized training and distributed execution scheme that is developed based on the Multi-Agent Transformer (MAT) architecture. This design allows a single trained model to generalize to larger environments and accommodate varying team sizes and compositions. We evaluate CATMiP in a 2D grid-world simulation environment and compare its performance against planning-based exploration methods. Results demonstrate CATMiP's superior efficiency, scalability, and robustness to communication dropouts, highlighting its potential for real-world heterogeneous mobile robot systems. The code is available at https://github.com/mylad13/CATMiP.
Related papers
- Graph Based Deep Reinforcement Learning Aided by Transformers for Multi-Agent Cooperation [2.8169258551959544]
We propose a novel framework that integrates Graph Neural Networks (GNNs), Deep Reinforcement Learning (DRL), and transformer-based mechanisms for enhanced multi-agent coordination and collective task execution.
Our approach leverages GNNs to model agent-agent and agent-goal interactions through adaptive graph construction, enabling efficient information aggregation and decision-making under constrained communication.
arXiv Detail & Related papers (2025-04-11T01:46:18Z) - Learning Multi-Robot Coordination through Locality-Based Factorized Multi-Agent Actor-Critic Algorithm [54.98788921815576]
We present a novel cooperative multi-agent reinforcement learning method called textbfLocality based textbfFactorized textbfMulti-Agent textbfActor-textbfCritic (Loc-FACMAC)
We integrate the concept of locality into critic learning, where strongly related robots form partitions during training.
Our method improves existing algorithms by focusing on local rewards and leveraging partition-based learning to enhance training efficiency and performance.
arXiv Detail & Related papers (2025-03-24T16:00:16Z) - RoboFactory: Exploring Embodied Agent Collaboration with Compositional Constraints [27.467048581838405]
We propose the concept of compositional constraints for embodied multi-agent systems.
We design interfaces tailored to different types of constraints, enabling seamless interaction with the physical world.
We introduce the first benchmark for embodied multi-agent manipulation, RoboFactory.
arXiv Detail & Related papers (2025-03-20T17:58:38Z) - Simultaneous Multi-Robot Motion Planning with Projected Diffusion Models [57.45019514036948]
Simultaneous MRMP Diffusion (SMD) is a novel approach integrating constrained optimization into the diffusion sampling process to produce kinematically feasible trajectories.
The paper introduces a comprehensive MRMP benchmark to evaluate trajectory planning algorithms across scenarios with varying robot densities, obstacle complexities, and motion constraints.
arXiv Detail & Related papers (2025-02-05T20:51:28Z) - A Local Information Aggregation based Multi-Agent Reinforcement Learning for Robot Swarm Dynamic Task Allocation [4.144893164317513]
We introduce a novel framework using a decentralized partially observable Markov decision process (Dec_POMDP)
At the core of our methodology is the Local Information Aggregation Multi-Agent Deep Deterministic Policy Gradient (LIA_MADDPG) algorithm.
Our empirical evaluations show that the LIA module can be seamlessly integrated into various CTDE-based MARL methods.
arXiv Detail & Related papers (2024-11-29T07:53:05Z) - Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
We introduce a temporal gating mechanism for each agent, enabling dynamic decisions on whether to receive shared information at a given time.
arXiv Detail & Related papers (2024-11-01T05:56:51Z) - Towards Collaborative Intelligence: Propagating Intentions and Reasoning for Multi-Agent Coordination with Large Language Models [41.95288786980204]
Current agent frameworks often suffer from dependencies on single-agent execution and lack robust inter- module communication.
We present a framework for training large language models as collaborative agents to enable coordinated behaviors in cooperative MARL.
A propagation network transforms broadcast intentions into teammate-specific communication messages, sharing relevant goals with designated teammates.
arXiv Detail & Related papers (2024-07-17T13:14:00Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
Existing multi-agent frameworks often struggle with integrating diverse capable third-party agents.
We propose the Internet of Agents (IoA), a novel framework that addresses these limitations.
IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control.
arXiv Detail & Related papers (2024-07-09T17:33:24Z) - Distributed Autonomous Swarm Formation for Dynamic Network Bridging [40.27919181139919]
We formulate the problem of dynamic network bridging in a novel Decentralized Partially Observable Markov Decision Process (Dec-POMDP)
We propose a Multi-Agent Reinforcement Learning (MARL) approach for the problem based on Graph Convolutional Reinforcement Learning (DGN)
The proposed method is evaluated in a simulated environment and compared to a centralized baseline showing promising results.
arXiv Detail & Related papers (2024-04-02T01:45:03Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScope is a developer-centric multi-agent platform with message exchange as its core communication mechanism.
The abundant syntactic tools, built-in agents and service functions, user-friendly interfaces for application demonstration and utility monitor, zero-code programming workstation, and automatic prompt tuning mechanism significantly lower the barriers to both development and deployment.
arXiv Detail & Related papers (2024-02-21T04:11:28Z) - Multi-Agent Reinforcement Learning for Pragmatic Communication and
Control [40.11766545693947]
We propose a joint design that combines goal-oriented communication and networked control into a single optimization model.
Joint training of the communication and control systems can significantly improve the overall performance.
arXiv Detail & Related papers (2023-02-28T08:30:24Z) - A Unified Architecture for Dynamic Role Allocation and Collaborative
Task Planning in Mixed Human-Robot Teams [0.0]
We present a novel architecture for dynamic role allocation and collaborative task planning in a mixed human-robot team of arbitrary size.
The architecture capitalizes on a centralized reactive and modular task-agnostic planning method based on Behavior Trees (BTs)
Different metrics used as MILP cost allow the architecture to favor various aspects of the collaboration.
arXiv Detail & Related papers (2023-01-19T12:30:56Z) - AdverSAR: Adversarial Search and Rescue via Multi-Agent Reinforcement
Learning [4.843554492319537]
We propose an algorithm that allows robots to efficiently coordinate their strategies in the presence of adversarial inter-agent communications.
It is assumed that the robots have no prior knowledge of the target locations, and they can interact with only a subset of neighboring robots at any time.
The effectiveness of our approach is demonstrated on a collection of prototype grid-world environments.
arXiv Detail & Related papers (2022-12-20T08:13:29Z) - Consolidating Kinematic Models to Promote Coordinated Mobile
Manipulations [96.03270112422514]
We construct a Virtual Kinematic Chain (VKC) that consolidates the kinematics of the mobile base, the arm, and the object to be manipulated in mobile manipulations.
A mobile manipulation task is represented by altering the state of the constructed VKC, which can be converted to a motion planning problem.
arXiv Detail & Related papers (2021-08-03T02:59:41Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Graph Neural Networks for Decentralized Multi-Robot Submodular Action
Selection [101.38634057635373]
We focus on applications where robots are required to jointly select actions to maximize team submodular objectives.
We propose a general-purpose learning architecture towards submodular at scale, with decentralized communications.
We demonstrate the performance of our GNN-based learning approach in a scenario of active target coverage with large networks of robots.
arXiv Detail & Related papers (2021-05-18T15:32:07Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for
Mobile Manipulation [99.2543521972137]
ReLMoGen is a framework that combines a learned policy to predict subgoals and a motion generator to plan and execute the motion needed to reach these subgoals.
Our method is benchmarked on a diverse set of seven robotics tasks in photo-realistic simulation environments.
ReLMoGen shows outstanding transferability between different motion generators at test time, indicating a great potential to transfer to real robots.
arXiv Detail & Related papers (2020-08-18T08:05:15Z) - A Cordial Sync: Going Beyond Marginal Policies for Multi-Agent Embodied
Tasks [111.34055449929487]
We introduce the novel task FurnMove in which agents work together to move a piece of furniture through a living room to a goal.
Unlike existing tasks, FurnMove requires agents to coordinate at every timestep.
We identify two challenges when training agents to complete FurnMove: existing decentralized action sampling procedures do not permit expressive joint action policies.
Using SYNC-policies and CORDIAL, our agents achieve a 58% completion rate on FurnMove, an impressive absolute gain of 25 percentage points over competitive decentralized baselines.
arXiv Detail & Related papers (2020-07-09T17:59:57Z) - Learning Structured Communication for Multi-agent Reinforcement Learning [104.64584573546524]
This work explores the large-scale multi-agent communication mechanism under a multi-agent reinforcement learning (MARL) setting.
We propose a novel framework termed as Learning Structured Communication (LSC) by using a more flexible and efficient communication topology.
arXiv Detail & Related papers (2020-02-11T07:19:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.