Enhancing Counterfactual Explanation Search with Diffusion Distance and Directional Coherence
- URL: http://arxiv.org/abs/2404.12810v2
- Date: Thu, 25 Jul 2024 08:00:44 GMT
- Title: Enhancing Counterfactual Explanation Search with Diffusion Distance and Directional Coherence
- Authors: Marharyta Domnich, Raul Vicente,
- Abstract summary: A pressing issue in the adoption of AI models is the increasing demand for more human-centric explanations of their predictions.
We propose and test the incorporation of two novel biases to enhance the search for effective counterfactual explanations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A pressing issue in the adoption of AI models is the increasing demand for more human-centric explanations of their predictions. To advance towards more human-centric explanations, understanding how humans produce and select explanations has been beneficial. In this work, inspired by insights of human cognition we propose and test the incorporation of two novel biases to enhance the search for effective counterfactual explanations. Central to our methodology is the application of diffusion distance, which emphasizes data connectivity and actionability in the search for feasible counterfactual explanations. In particular, diffusion distance effectively weights more those points that are more interconnected by numerous short-length paths. This approach brings closely connected points nearer to each other, identifying a feasible path between them. We also introduce a directional coherence term that allows the expression of a preference for the alignment between the joint and marginal directional changes in feature space to reach a counterfactual. This term enables the generation of counterfactual explanations that align with a set of marginal predictions based on expectations of how the outcome of the model varies by changing one feature at a time. We evaluate our method, named Coherent Directional Counterfactual Explainer (CoDiCE), and the impact of the two novel biases against existing methods such as DiCE, FACE, Prototypes, and Growing Spheres. Through a series of ablation experiments on both synthetic and real datasets with continuous and mixed-type features, we demonstrate the effectiveness of our method.
Related papers
- Rethinking Distance Metrics for Counterfactual Explainability [53.436414009687]
We investigate a framing for counterfactual generation methods that considers counterfactuals not as independent draws from a region around the reference, but as jointly sampled with the reference from the underlying data distribution.
We derive a distance metric, tailored for counterfactual similarity that can be applied to a broad range of settings.
arXiv Detail & Related papers (2024-10-18T15:06:50Z) - Understanding Contrastive Learning via Distributionally Robust
Optimization [29.202594242468678]
This study reveals the inherent tolerance of contrastive learning (CL) towards sampling bias, wherein negative samples may encompass similar semantics (eg labels)
We bridge this research gap by analyzing CL through the lens of distributionally robust optimization (DRO), yielding several key insights.
We also identify CL's potential shortcomings, including over-conservatism and sensitivity to outliers, and introduce a novel Adjusted InfoNCE loss (ADNCE) to mitigate these issues.
arXiv Detail & Related papers (2023-10-17T07:32:59Z) - Navigating Explanatory Multiverse Through Counterfactual Path Geometry [5.109188339767978]
We introduce the novel concept of explanatory multiverse.
We show how to navigate, reason about and compare the geometry of these trajectories.
We propose an all-in-one metric, called opportunity potential, to quantify them.
arXiv Detail & Related papers (2023-06-05T11:26:46Z) - Exact Subspace Diffusion for Decentralized Multitask Learning [17.592204922442832]
Distributed strategies for multitask learning induce relationships between agents in a more nuanced manner, and encourage collaboration without enforcing consensus.
We develop a generalization of the exact diffusion algorithm for subspace constrained multitask learning over networks, and derive an accurate expression for its mean-squared deviation.
We verify numerically the accuracy of the predicted performance expressions, as well as the improved performance of the proposed approach over alternatives based on approximate projections.
arXiv Detail & Related papers (2023-04-14T19:42:19Z) - Hybrid Predictive Coding: Inferring, Fast and Slow [62.997667081978825]
We propose a hybrid predictive coding network that combines both iterative and amortized inference in a principled manner.
We demonstrate that our model is inherently sensitive to its uncertainty and adaptively balances balances to obtain accurate beliefs using minimum computational expense.
arXiv Detail & Related papers (2022-04-05T12:52:45Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - Demarcating Endogenous and Exogenous Opinion Dynamics: An Experimental
Design Approach [27.975266406080152]
In this paper, we design a suite of unsupervised classification methods based on experimental design approaches.
We aim to select the subsets of events which minimize different measures of mean estimation error.
Our experiments range from validating prediction performance on unsanitized and sanitized events to checking the effect of selecting optimal subsets of various sizes.
arXiv Detail & Related papers (2021-02-11T11:38:15Z) - Diverse Knowledge Distillation for End-to-End Person Search [81.4926655119318]
Person search aims to localize and identify a specific person from a gallery of images.
Recent methods can be categorized into two groups, i.e., two-step and end-to-end approaches.
We propose a simple yet strong end-to-end network with diverse knowledge distillation to break the bottleneck.
arXiv Detail & Related papers (2020-12-21T09:04:27Z) - Disentangling Action Sequences: Discovering Correlated Samples [6.179793031975444]
We demonstrate the data itself plays a crucial role in disentanglement and instead of the factors, and the disentangled representations align the latent variables with the action sequences.
We propose a novel framework, fractional variational autoencoder (FVAE) to disentangle the action sequences with different significance step-by-step.
Experimental results on dSprites and 3D Chairs show that FVAE improves the stability of disentanglement.
arXiv Detail & Related papers (2020-10-17T07:37:50Z) - DRG: Dual Relation Graph for Human-Object Interaction Detection [65.50707710054141]
We tackle the challenging problem of human-object interaction (HOI) detection.
Existing methods either recognize the interaction of each human-object pair in isolation or perform joint inference based on complex appearance-based features.
In this paper, we leverage an abstract spatial-semantic representation to describe each human-object pair and aggregate the contextual information of the scene via a dual relation graph.
arXiv Detail & Related papers (2020-08-26T17:59:40Z) - Interference and Generalization in Temporal Difference Learning [86.31598155056035]
We study the link between generalization and interference in temporal-difference (TD) learning.
We find that TD easily leads to low-interference, under-generalizing parameters, while the effect seems reversed in supervised learning.
arXiv Detail & Related papers (2020-03-13T15:49:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.