Latent Schr{ö}dinger Bridge Diffusion Model for Generative Learning
- URL: http://arxiv.org/abs/2404.13309v2
- Date: Tue, 15 Oct 2024 07:09:11 GMT
- Title: Latent Schr{ö}dinger Bridge Diffusion Model for Generative Learning
- Authors: Yuling Jiao, Lican Kang, Huazhen Lin, Jin Liu, Heng Zuo,
- Abstract summary: We introduce a novel generative learning methodology utilizing the Schr"odinger bridge diffusion model in latent space.
We develop a diffusion model within the latent space utilizing the Schr"odinger bridge framework.
- Score: 7.13080924844185
- License:
- Abstract: This paper aims to conduct a comprehensive theoretical analysis of current diffusion models. We introduce a novel generative learning methodology utilizing the Schr{\"o}dinger bridge diffusion model in latent space as the framework for theoretical exploration in this domain. Our approach commences with the pre-training of an encoder-decoder architecture using data originating from a distribution that may diverge from the target distribution, thus facilitating the accommodation of a large sample size through the utilization of pre-existing large-scale models. Subsequently, we develop a diffusion model within the latent space utilizing the Schr{\"o}dinger bridge framework. Our theoretical analysis encompasses the establishment of end-to-end error analysis for learning distributions via the latent Schr{\"o}dinger bridge diffusion model. Specifically, we control the second-order Wasserstein distance between the generated distribution and the target distribution. Furthermore, our obtained convergence rates effectively mitigate the curse of dimensionality, offering robust theoretical support for prevailing diffusion models.
Related papers
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Unveil Conditional Diffusion Models with Classifier-free Guidance: A Sharp Statistical Theory [87.00653989457834]
Conditional diffusion models serve as the foundation of modern image synthesis and find extensive application in fields like computational biology and reinforcement learning.
Despite the empirical success, theory of conditional diffusion models is largely missing.
This paper bridges the gap by presenting a sharp statistical theory of distribution estimation using conditional diffusion models.
arXiv Detail & Related papers (2024-03-18T17:08:24Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
Guidance serves as a key concept in diffusion models, yet its effectiveness is often limited by the need for extra data annotation or pretraining.
We propose a framework to extract guidance from, and specifically for, diffusion models.
arXiv Detail & Related papers (2023-12-14T11:19:11Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
We provide the first rigorous analysis on approximation and generalization abilities of diffusion modeling.
We show that when the true density function belongs to the Besov space and the empirical score matching loss is properly minimized, the generated data distribution achieves the nearly minimax optimal estimation rates.
arXiv Detail & Related papers (2023-03-03T11:31:55Z) - An optimal control perspective on diffusion-based generative modeling [9.806130366152194]
We establish a connection between optimal control and generative models based on differential equations (SDEs)
In particular, we derive a Hamilton-Jacobi-Bellman equation that governs the evolution of the log-densities of the underlying SDE marginals.
We develop a novel diffusion-based method for sampling from unnormalized densities.
arXiv Detail & Related papers (2022-11-02T17:59:09Z) - Unifying Diffusion Models' Latent Space, with Applications to
CycleDiffusion and Guidance [95.12230117950232]
We show that a common latent space emerges from two diffusion models trained independently on related domains.
Applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors.
arXiv Detail & Related papers (2022-10-11T15:53:52Z) - Let us Build Bridges: Understanding and Extending Diffusion Generative
Models [19.517597928769042]
Diffusion-based generative models have achieved promising results recently, but raise an array of open questions.
This work tries to re-exam the overall framework in order to gain better theoretical understandings.
We present 1) a first theoretical error analysis for learning diffusion generation models, and 2) a simple and unified approach to learning on data from different discrete and constrained domains.
arXiv Detail & Related papers (2022-08-31T08:58:10Z) - Convergence of denoising diffusion models under the manifold hypothesis [3.096615629099617]
Denoising diffusion models are a recent class of generative models exhibiting state-of-the-art performance in image and audio synthesis.
This paper provides the first convergence results for diffusion models in a more general setting.
arXiv Detail & Related papers (2022-08-10T12:50:47Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution.
We show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process.
arXiv Detail & Related papers (2022-06-10T15:09:46Z) - Deep Generative Learning via Schr\"{o}dinger Bridge [14.138796631423954]
We learn a generative model via entropy with a Schr"odinger Bridge.
We show that the generative model via Schr"odinger Bridge is comparable with state-of-the-art GANs.
arXiv Detail & Related papers (2021-06-19T03:35:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.