BANSAI: Towards Bridging the AI Adoption Gap in Industrial Robotics with Neurosymbolic Programming
- URL: http://arxiv.org/abs/2404.13652v1
- Date: Sun, 21 Apr 2024 13:04:58 GMT
- Title: BANSAI: Towards Bridging the AI Adoption Gap in Industrial Robotics with Neurosymbolic Programming
- Authors: Benjamin Alt, Julia Dvorak, Darko Katic, Rainer Jäkel, Michael Beetz, Gisela Lanza,
- Abstract summary: We propose the BANSAI approach (Bridging the AI Adoption Gap via Neurosymbolic AI)
It systematically leverages principles of neurosymbolic AI to establish data-driven, subsymbolic program synthesis and optimization.
BANSAI conceptually unites several lines of prior research and proposes a path toward practical, real-world validation.
- Score: 6.502950223731164
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Over the past decade, deep learning helped solve manipulation problems across all domains of robotics. At the same time, industrial robots continue to be programmed overwhelmingly using traditional program representations and interfaces. This paper undertakes an analysis of this "AI adoption gap" from an industry practitioner's perspective. In response, we propose the BANSAI approach (Bridging the AI Adoption Gap via Neurosymbolic AI). It systematically leverages principles of neurosymbolic AI to establish data-driven, subsymbolic program synthesis and optimization in modern industrial robot programming workflow. BANSAI conceptually unites several lines of prior research and proposes a path toward practical, real-world validation.
Related papers
- Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - A call for embodied AI [1.7544885995294304]
We propose Embodied AI as the next fundamental step in the pursuit of Artificial General Intelligence.
By broadening the scope of Embodied AI, we introduce a theoretical framework based on cognitive architectures.
This framework is aligned with Friston's active inference principle, offering a comprehensive approach to EAI development.
arXiv Detail & Related papers (2024-02-06T09:11:20Z) - Towards Building AI-CPS with NVIDIA Isaac Sim: An Industrial Benchmark
and Case Study for Robotics Manipulation [18.392301524812645]
As a representative cyber-physical system (CPS), robotic manipulator has been widely adopted in various academic research and industrial processes.
Recent studies in robotics manipulation have started employing artificial intelligence (AI) approaches as controllers to achieve better adaptability and performance.
We propose a public industrial benchmark for robotics manipulation in this paper.
arXiv Detail & Related papers (2023-07-31T18:21:45Z) - Navigating the Complexity of Generative AI Adoption in Software
Engineering [6.190511747986327]
The adoption patterns of Generative Artificial Intelligence (AI) tools within software engineering are investigated.
Influencing factors at the individual, technological, and societal levels are analyzed.
arXiv Detail & Related papers (2023-07-12T11:05:19Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
We focus on the two concepts of world models and predictive coding.
In neuroscience, predictive coding proposes that the brain continuously predicts its inputs and adapts to model its own dynamics and control behavior in its environment.
arXiv Detail & Related papers (2023-01-14T06:38:14Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
We propose a backpropagation-free approach to robotic control through the neuro-cognitive computational framework of neural generative coding (NGC)
We design an agent built completely from powerful predictive coding/processing circuits that facilitate dynamic, online learning from sparse rewards.
We show that our proposed ActPC agent performs well in the face of sparse (extrinsic) reward signals and is competitive with or outperforms several powerful backprop-based RL approaches.
arXiv Detail & Related papers (2022-09-19T16:49:32Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Automation: An Essential Component Of Ethical AI? [0.6445605125467572]
Ethics is sometimes considered to be too abstract to be meaningfully implemented in artificial intelligence (AI)
In this paper, we reflect on other aspects of computing that were previously considered to be very abstract.
We wonder if ethical AI might be similarly achieved and advocate the process of automation as key step in making AI take ethical decisions.
arXiv Detail & Related papers (2021-03-29T16:25:58Z) - Time for AI (Ethics) Maturity Model Is Now [15.870654219935972]
This paper argues that AI software is still software and needs to be approached from the software development perspective.
We wish to discuss whether the focus should be on AI ethics or, more broadly, the quality of an AI system.
arXiv Detail & Related papers (2021-01-29T17:37:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.