論文の概要: Navigating the Path of Writing: Outline-guided Text Generation with Large Language Models
- arxiv url: http://arxiv.org/abs/2404.13919v2
- Date: Sun, 23 Feb 2025 15:24:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:49:42.013476
- Title: Navigating the Path of Writing: Outline-guided Text Generation with Large Language Models
- Title(参考訳): 文章の経路をナビゲートする:大規模言語モデルを用いたアウトラインガイド付きテキスト生成
- Authors: Yukyung Lee, Soonwon Ka, Bokyung Son, Pilsung Kang, Jaewook Kang,
- Abstract要約: 大規模言語モデル(LLM)は、コンテンツ作成プラットフォームにおける人間とのコラボレーションによる生産性向上という、執筆プロセスに影響を与えている。
目標指向で高品質なテキストを生成する上で,LCMをガイドする上で,アウトラインを明示的に利用するフレームワークであるWritePathを提案する。
- 参考スコア(独自算出の注目度): 8.920436030483872
- License:
- Abstract: Large Language Models (LLMs) have impacted the writing process, enhancing productivity by collaborating with humans in content creation platforms. However, generating high-quality, user-aligned text to satisfy real-world content creation needs remains challenging. We propose WritingPath, a framework that uses explicit outlines to guide LLMs in generating goal-oriented, high-quality text. Our approach draws inspiration from structured writing planning and reasoning paths, focusing on reflecting user intentions throughout the writing process. To validate our approach in real-world scenarios, we construct a diverse dataset from unstructured blog posts to benchmark writing performance and introduce a comprehensive evaluation framework assessing the quality of outlines and generated texts. Our evaluations with various LLMs demonstrate that the WritingPath approach significantly enhances text quality according to evaluations by both LLMs and professional writers.
- Abstract(参考訳): 大規模言語モデル(LLM)は、コンテンツ作成プラットフォームにおける人間とのコラボレーションによる生産性向上という、執筆プロセスに影響を与えている。
しかし、現実世界のコンテンツ作成を満足させるために高品質なユーザー整合テキストを生成することは、依然として困難である。
目標指向で高品質なテキストを生成する上で,LCMをガイドする上で,アウトラインを明示的に利用するフレームワークであるWritePathを提案する。
我々のアプローチは、構造化された書き込み計画と推論パスからインスピレーションを得て、書き込みプロセス全体を通してユーザの意図を反映することに重点を置いています。
実世界のシナリオにおけるアプローチを検証するため、構造化されていないブログ記事からベンチマーク作成性能まで多様なデータセットを構築し、アウトラインと生成されたテキストの品質を評価する包括的な評価フレームワークを導入する。
LLMによる評価は,LLMとプロのライターの双方による評価により,文章の質を著しく向上させることを示す。
関連論文リスト
- Detecting Document-level Paraphrased Machine Generated Content: Mimicking Human Writing Style and Involving Discourse Features [57.34477506004105]
機械生成コンテンツは、学術プラジャリズムや誤報の拡散といった課題を提起する。
これらの課題を克服するために、新しい方法論とデータセットを導入します。
人間の筆記スタイルをエミュレートするエンコーダデコーダモデルであるMhBARTを提案する。
また,PDTB前処理による談話解析を統合し,構造的特徴を符号化するモデルであるDTransformerを提案する。
論文 参考訳(メタデータ) (2024-12-17T08:47:41Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
我々はtextscLlama-2 や textscMistral のような大規模言語モデル (LLM) のための新しい評価フレームワークを提案する。
このアプローチにより、コーパスの整合を必要とせず、生成したテキストの品質と多様性を微妙に評価できる。
論文 参考訳(メタデータ) (2024-02-16T13:53:26Z) - Evaluating Large Language Model Creativity from a Literary Perspective [13.672268920902187]
本稿では,大規模言語モデルが創造的記述プロセスにおいて補助ツールとして機能する可能性を評価する。
我々は,背景記述をインターリーブする対話的かつ多声的なプロンプト戦略,構成を案内する指示,対象スタイルのテキストのサンプル,与えられたサンプルの批判的議論を開発する。
論文 参考訳(メタデータ) (2023-11-30T16:46:25Z) - InternLM-XComposer: A Vision-Language Large Model for Advanced
Text-image Comprehension and Composition [111.65584066987036]
InternLM-XComposerは、高度な画像テキストの理解と合成を可能にする視覚言語による大規模モデルである。
シームレスに画像を統合するコヒーレントでコンテキスト的な記事を生成することができる。
画像がコンテンツを強化するテキスト内の領域をインテリジェントに識別し、最も適切な視覚的候補を自動的に挿入する。
論文 参考訳(メタデータ) (2023-09-26T17:58:20Z) - Teach LLMs to Personalize -- An Approach inspired by Writing Education [37.198598706659524]
大規模言語モデル(LLM)を用いたパーソナライズされたテキスト生成のための汎用的アプローチを提案する。
書字教育の実践に触発されて、パーソナライズされた世代にLLMを教えるためのマルチステージ・マルチタスク・フレームワークを開発した。
論文 参考訳(メタデータ) (2023-08-15T18:06:23Z) - Exploring the Use of Large Language Models for Reference-Free Text
Quality Evaluation: An Empirical Study [63.27346930921658]
ChatGPTは、参照なしで様々な視点からテキスト品質を効果的に評価することができる。
ChatGPTを用いてテキスト品質を測定するExplicit Scoreは、3つの手法の中で最も効果的で信頼性の高い方法である。
論文 参考訳(メタデータ) (2023-04-03T05:29:58Z) - Decoding the End-to-end Writing Trajectory in Scholarly Manuscripts [7.294418916091011]
そこで本研究では,意図,著作者行動,および記述データの情報タイプに応じて,学術的な記述行動の分類を行う新しい分類法を提案する。
学術論文の分類学は,認知書記理論に動機付けられ,一般的な書記の流れを辿るために,分類のレベルが3つ含まれている。
ManuScriptは、書道の直線性と非直線性を捉えることによって、学術的な書道の完全な図面を提供する。
論文 参考訳(メタデータ) (2023-03-31T20:33:03Z) - Large Language Models are Diverse Role-Players for Summarization
Evaluation [82.31575622685902]
文書要約の品質は、文法や正しさといった客観的な基準と、情報性、簡潔さ、魅力といった主観的な基準で人間の注釈者によって評価することができる。
BLUE/ROUGEのような自動評価手法のほとんどは、上記の次元を適切に捉えることができないかもしれない。
目的と主観の両面から生成されたテキストと参照テキストを比較し,総合的な評価フレームワークを提供するLLMに基づく新しい評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-27T10:40:59Z) - Beyond Text Generation: Supporting Writers with Continuous Automatic
Text Summaries [27.853155569154705]
本稿では,ユーザによる記述プロセスの計画,構造化,反映を支援するテキストエディタを提案する。
自動テキスト要約を用いて、連続的に更新された段落の要約をマージンアノテーションとして提供する。
論文 参考訳(メタデータ) (2022-08-19T13:09:56Z) - CoAuthor: Designing a Human-AI Collaborative Writing Dataset for
Exploring Language Model Capabilities [92.79451009324268]
我々は,GPT-3の創造的かつ議論的な記述を支援する能力を明らかにするために設計されたデータセットであるCoAuthorを提案する。
我々は、CoAuthorがGPT-3の言語、アイデア、コラボレーション機能に関する問題に対処できることを実証した。
インタラクション設計に関して,この作業がLMの約束や落とし穴に関して,より原則化された議論を促進する可能性について論じる。
論文 参考訳(メタデータ) (2022-01-18T07:51:57Z) - DRAG: Director-Generator Language Modelling Framework for Non-Parallel
Author Stylized Rewriting [9.275464023441227]
書き直しは、入力テキストを特定の著者のスタイルで書き直す作業である。
著者のスタイルでコンテンツの書き直しを行うためのディレクター・ジェネレータフレームワークを提案する。
論文 参考訳(メタデータ) (2021-01-28T06:52:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。