論文の概要: Protecting Your LLMs with Information Bottleneck
- arxiv url: http://arxiv.org/abs/2404.13968v1
- Date: Mon, 22 Apr 2024 08:16:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 14:45:41.495062
- Title: Protecting Your LLMs with Information Bottleneck
- Title(参考訳): インフォメーション・ボトルネックでLLMを保護する
- Authors: Zichuan Liu, Zefan Wang, Linjie Xu, Jinyu Wang, Lei Song, Tianchun Wang, Chunlin Chen, Wei Cheng, Jiang Bian,
- Abstract要約: 本稿では,情報ボトルネック原理に基づく防御機構であるIBProtector(Information Bottleneck Protector)を紹介する。
IBProtectorは、軽量で訓練可能な抽出器によって促進されるプロンプトを選択的に圧縮し、摂動する。
IBProtectorはジェイルブレイク対策において,現在の防御方法よりも優れていた。
- 参考スコア(独自算出の注目度): 20.870610473199125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of large language models (LLMs) has revolutionized the field of natural language processing, yet they might be attacked to produce harmful content. Despite efforts to ethically align LLMs, these are often fragile and can be circumvented by jailbreaking attacks through optimized or manual adversarial prompts. To address this, we introduce the Information Bottleneck Protector (IBProtector), a defense mechanism grounded in the information bottleneck principle, and we modify the objective to avoid trivial solutions. The IBProtector selectively compresses and perturbs prompts, facilitated by a lightweight and trainable extractor, preserving only essential information for the target LLMs to respond with the expected answer. Moreover, we further consider a situation where the gradient is not visible to be compatible with any LLM. Our empirical evaluations show that IBProtector outperforms current defense methods in mitigating jailbreak attempts, without overly affecting response quality or inference speed. Its effectiveness and adaptability across various attack methods and target LLMs underscore the potential of IBProtector as a novel, transferable defense that bolsters the security of LLMs without requiring modifications to the underlying models.
- Abstract(参考訳): 大規模言語モデル(LLM)の出現は自然言語処理の分野に革命をもたらしたが、有害なコンテンツを生み出すために攻撃される可能性がある。
LLMを倫理的に整合させる努力にもかかわらず、これらはしばしば脆弱であり、最適化されたまたは手動の敵のプロンプトを通じてジェイルブレイク攻撃によって回避される。
そこで我々は,情報ボトルネック原理に基づく防御機構であるIBProtector(Information Bottleneck Protector)を導入する。
IBProtectorは、軽量で訓練可能な抽出器によって促進される、選択的に圧縮および摂動プロンプトを圧縮し、目標のLSMが期待する応答に応答するために必要な情報のみを保持する。
さらに,LLMと互換性のある勾配が見えない状況についても検討する。
実験により, IBProtectorは, 応答品質や推論速度に過度に影響を及ぼすことなく, ジェイルブレイクを緩和する現行の防御方法より優れていることが示された。
様々な攻撃方法と目標LLMに対する適応性は、基盤となるモデルの変更を必要とせず、LLMのセキュリティを増強する、新規で移動可能な防御技術としてのIBProtectorの可能性を強調している。
関連論文リスト
- Harnessing Task Overload for Scalable Jailbreak Attacks on Large Language Models [8.024771725860127]
大きな言語モデル(LLM)は、安全メカニズムをバイパスするジェイルブレイク攻撃に対して脆弱なままである。
我々は, LLMの安全性ポリシーの活性化を前提として, 計算資源を占有する新しい拡張性のあるジェイルブレイク攻撃を導入する。
論文 参考訳(メタデータ) (2024-10-05T15:10:01Z) - Buckle Up: Robustifying LLMs at Every Customization Stage via Data Curation [20.176424063726277]
大規模言語モデル(LLM)は「カストミゼーション(customization)」と呼ばれるプロセスを通じて下流アプリケーションに広く適応する。
近年の研究では、LSMを悪意のあるサンプルでチューニングすることで、その堅牢性を損なうことができ、有害なコンテンツを増幅する脆弱性が明らかにされている。
論文 参考訳(メタデータ) (2024-10-03T05:24:38Z) - Purple-teaming LLMs with Adversarial Defender Training [57.535241000787416]
本稿では,PAD(Adversarial Defender Training)を用いたPurple-teaming LLMを提案する。
PADは、赤チーム(アタック)技術と青チーム(セーフティトレーニング)技術を新たに取り入れることで、LSMを保護するために設計されたパイプラインである。
PADは、効果的な攻撃と堅牢な安全ガードレールの確立の両方において、既存のベースラインを著しく上回っている。
論文 参考訳(メタデータ) (2024-07-01T23:25:30Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
本稿では,大規模言語モデル(LLM)のための新しいプロンプトベースの防御機構であるDPPを紹介する。
従来のアプローチとは異なり、DPP は LLM の高能率を維持しながら最小の攻撃成功率 (ASR) を達成するように設計されている。
LLAMA-2-7B-ChatおよびMistral-7B-Instruct-v0.2モデルによる実験結果から,DSPの堅牢性と適応性が確認された。
論文 参考訳(メタデータ) (2024-05-30T14:40:35Z) - Defending Large Language Models Against Jailbreak Attacks via Layer-specific Editing [14.094372002702476]
大規模言語モデル(LLM)は、広範囲の現実世界のアプリケーションで採用されつつある。
近年の研究では、LSMは故意に構築された敵のプロンプトに弱いことが示されている。
そこで本研究では,新しい防衛手法である textbfLayer-specific textbfEditing (LED) を提案する。
論文 参考訳(メタデータ) (2024-05-28T13:26:12Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
textbfAdaptive textbfShield Promptingを提案する。これは、MLLMを構造ベースのジェイルブレイク攻撃から守るための防御プロンプトで入力をプリペイドする。
我々の手法は、構造に基づくジェイルブレイク攻撃に対するMLLMの堅牢性を一貫して改善することができる。
論文 参考訳(メタデータ) (2024-03-14T15:57:13Z) - A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily [51.63085197162279]
大きな言語モデル(LLM)は有用で安全な応答を提供するように設計されている。
ジェイルブレイク」と呼ばれる 敵のプロンプトは 保護を回避できる
有効なジェイルブレイクプロンプトを生成するためにLLM自体を活用する自動フレームワークであるReNeLLMを提案する。
論文 参考訳(メタデータ) (2023-11-14T16:02:16Z) - Attack Prompt Generation for Red Teaming and Defending Large Language
Models [70.157691818224]
大規模言語モデル (LLM) は、有害なコンテンツを生成するためにLSMを誘導するレッド・チーム・アタックの影響を受けやすい。
本稿では、手動と自動の手法を組み合わせて、高品質な攻撃プロンプトを経済的に生成する統合的アプローチを提案する。
論文 参考訳(メタデータ) (2023-10-19T06:15:05Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
SmoothLLMは,大規模言語モデル(LLM)に対するジェイルブレーキング攻撃を軽減するために設計された,最初のアルゴリズムである。
敵が生成したプロンプトが文字レベルの変化に対して脆弱であることから、我々の防衛はまず、与えられた入力プロンプトの複数のコピーをランダムに摂動し、対応する予測を集約し、敵の入力を検出する。
論文 参考訳(メタデータ) (2023-10-05T17:01:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。