論文の概要: Information Re-Organization Improves Reasoning in Large Language Models
- arxiv url: http://arxiv.org/abs/2404.13985v1
- Date: Mon, 22 Apr 2024 08:47:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 14:45:41.409009
- Title: Information Re-Organization Improves Reasoning in Large Language Models
- Title(参考訳): 大規模言語モデルにおける情報再編成による推論の改善
- Authors: Xiaoxia Cheng, Zeqi Tan, Weiming Lu,
- Abstract要約: 大規模言語モデル(LLM)の推論能力を高める情報再構成(InfoRE)手法を提案する。
まず、文書や段落などの文脈内容の再編成処理を行い、論理的関係を得る。
これにより、LLMはこれらの論理的関係を明確に認識することで、文脈的内容の理解を深めることができる。
- 参考スコア(独自算出の注目度): 16.053710240867524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Improving the reasoning capabilities of large language models (LLMs) has attracted considerable interest. Recent approaches primarily focus on improving the reasoning process to yield a more precise final answer. However, in scenarios involving contextually aware reasoning, these methods neglect the importance of first identifying logical relationships from the context before proceeding with the reasoning. This oversight could lead to a superficial understanding and interaction with the context, potentially undermining the quality and reliability of the reasoning outcomes. In this paper, we propose an information re-organization (InfoRE) method before proceeding with the reasoning to enhance the reasoning ability of LLMs. We first perform a re-organization processing of the contextual content, e.g., documents or paragraphs, to obtain logical relationships. Then, we utilize the re-organized information in the reasoning process. This enables LLMs to deeply understand the contextual content by clearly perceiving these logical relationships. To demonstrate the effectiveness of our approach in improving the reasoning ability, we conduct experiments using Llama2-70B, GPT-3.5, and GPT-4 on various contextually aware multi-hop reasoning tasks. Using only a zero-shot setting, our method achieves an average improvement of 3\% across all tasks, highlighting its potential to improve the reasoning performance of LLMs. Our source code is available at https://github.com/hustcxx/InfoRE.
- Abstract(参考訳): 大きな言語モデル(LLM)の推論能力を改善することには、かなりの関心が寄せられている。
最近のアプローチは、より正確な最終回答を得るための推論プロセスの改善に重点を置いている。
しかしながら、文脈的に認識された推論を含むシナリオでは、これらの手法は、推論を進める前に、文脈から論理的関係を最初に識別することの重要性を無視する。
この監視は、表面的な理解とコンテキストとの相互作用をもたらし、推論結果の品質と信頼性を損なう可能性がある。
本稿では,LLMの推論能力を高めるために,情報再構成(InfoRE)手法を提案する。
まず、文脈内容、例えば文書や段落の再構成処理を行い、論理的関係を得る。
そして、推論過程において、再編成された情報を利用する。
これにより、LLMはこれらの論理的関係を明確に認識することで、文脈的内容の理解を深めることができる。
Llama2-70B, GPT-3.5, GPT-4 を用いて, 各種マルチホップ推論タスクにおいて, 提案手法の有効性を実証する。
ゼロショット設定のみを用いることで,全タスクの平均3倍の精度向上を実現し,LCMの推論性能向上の可能性を強調した。
ソースコードはhttps://github.com/hustcxx/InfoRE.comで公開されています。
関連論文リスト
- Improving Causal Reasoning in Large Language Models: A Survey [16.55801836321059]
因果推論は知性の重要な側面であり、問題解決、意思決定、世界理解に不可欠である。
大規模言語モデル(LLM)は出力に対して有理性を生成することができるが、因果推論を確実に行う能力は未だ不明である。
論文 参考訳(メタデータ) (2024-10-22T04:18:19Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
本稿では,Large Language Models (LLM) の質問をよりよく理解するための構造指向分析手法を提案する。
複雑な質問応答タスクの信頼性をさらに向上するために,多エージェント推論システム,構造指向自律推論エージェント(SARA)を提案する。
大規模な実験により,提案システムの有効性が検証された。
論文 参考訳(メタデータ) (2024-10-18T05:30:33Z) - P-FOLIO: Evaluating and Improving Logical Reasoning with Abundant Human-Written Reasoning Chains [97.25943550933829]
P-FOLIO(P-FOLIO)は、多種多様で複雑な推論連鎖からなる人称注釈付きデータセットである。
我々はP-FOLIOを用いて大規模言語モデル推論機能の評価と改善を行う。
論文 参考訳(メタデータ) (2024-10-11T19:22:57Z) - GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE)は、パラメトリックメモリと非パラメトリックメモリを統合する新しい推論フレームワークである。
本手法は,ゴールド回答検索ではなく,専門家の問題解決に類似した論理的・段階的推論手法を提案する。
論文 参考訳(メタデータ) (2024-10-11T03:05:06Z) - Reasoning with Large Language Models, a Survey [2.831296564800826]
本稿では,LSMによるプロンプトベース推論の急速に進展する分野について概説する。
我々の分類学は、多段階推論の生成、評価、制御の異なる方法を特定します。
我々は, 自己改善, 自己回帰, 推論過程のいくつかのメタ能力が, プロンプトの司法的利用によって可能であることを発見した。
論文 参考訳(メタデータ) (2024-07-16T08:49:35Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
最近開発された大規模言語モデル (LLM) は、幅広い言語理解タスクにおいて非常によく機能することが示されている。
しかし、それらは自然言語に対して本当に「理性」があるのだろうか?
この疑問は研究の注目を集めており、コモンセンス、数値、定性的など多くの推論技術が研究されている。
論文 参考訳(メタデータ) (2024-04-23T21:08:49Z) - LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
大規模言語モデル(LLM)の論理的推論能力を評価・拡張するための新しいアプローチであるLogicAskerを紹介する。
提案手法は, LLMが論理規則を学習する際の大きなギャップを明らかにし, 異なるモデル間で29%から90%の推論失敗を識別する。
GPT-4oのようなモデルにおける論理的推論を最大5%向上させることで、これらの知見を活用して、ターゲットとなる実演例と微調整データを構築した。
論文 参考訳(メタデータ) (2024-01-01T13:53:53Z) - Improving Large Language Models in Event Relation Logical Prediction [33.88499005859982]
イベント関係抽出は、綿密な意味的理解と厳密な論理的推論を必要とする課題である。
本稿では,イベント関連論理の理解と適用におけるLLMの能力について,詳細な調査を行う。
本研究により,LLMは論理的に一貫した推論子ではないことが明らかとなった。
論文 参考訳(メタデータ) (2023-10-13T14:53:06Z) - Concise and Organized Perception Facilitates Reasoning in Large Language Models [32.71672086718057]
大規模言語モデル (LLM) は, 推論作業における乱雑な内容や無関係な内容を扱う際に, 人間の認知バイアスに類似した障害パターンを示す。
コンシス・アンド・オーガナイズド・パーセプション(COP)という新しい推論手法を提案する。
COPは与えられたステートメントを慎重に分析し、冗長性を効率的に排除しながら、最も関連する情報を識別する。
論文 参考訳(メタデータ) (2023-10-05T04:47:49Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。