論文の概要: HashPoint: Accelerated Point Searching and Sampling for Neural Rendering
- arxiv url: http://arxiv.org/abs/2404.14044v1
- Date: Mon, 22 Apr 2024 09:57:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 14:26:08.601445
- Title: HashPoint: Accelerated Point Searching and Sampling for Neural Rendering
- Title(参考訳): HashPoint: ニューラルレンダリングのための高速化されたポイント検索とサンプリング
- Authors: Jiahao Ma, Miaomiao Liu, David Ahmedt-Aristizaba, Chuong Nguyen,
- Abstract要約: レンダリングとレイトレーシングの2つの典型的なアプローチが採用されている。
ボリューム化ベースの手法は、メモリの増大と忠実度低下を犠牲にしてリアルタイムレンダリングを可能にする。
対照的に、レイトレーシングに基づく手法は優れた品質を得るが、より長い時間を要求する。
我々はこの2つの戦略を組み合わせたHashPoint法によりこの問題を解決する。
- 参考スコア(独自算出の注目度): 9.418401219498223
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this paper, we address the problem of efficient point searching and sampling for volume neural rendering. Within this realm, two typical approaches are employed: rasterization and ray tracing. The rasterization-based methods enable real-time rendering at the cost of increased memory and lower fidelity. In contrast, the ray-tracing-based methods yield superior quality but demand longer rendering time. We solve this problem by our HashPoint method combining these two strategies, leveraging rasterization for efficient point searching and sampling, and ray marching for rendering. Our method optimizes point searching by rasterizing points within the camera's view, organizing them in a hash table, and facilitating rapid searches. Notably, we accelerate the rendering process by adaptive sampling on the primary surface encountered by the ray. Our approach yields substantial speed-up for a range of state-of-the-art ray-tracing-based methods, maintaining equivalent or superior accuracy across synthetic and real test datasets. The code will be available at https://jiahao-ma.github.io/hashpoint/.
- Abstract(参考訳): 本稿では,ボリュームニューラルレンダリングにおける効率的な点探索とサンプリングの問題に対処する。
この領域では、ラスタ化とレイトレーシングの2つの典型的なアプローチが採用されている。
ラスタライズベースの手法により、メモリ増加と忠実度低下のコストでリアルタイムレンダリングが可能になる。
対照的に、レイトレーシングに基づく手法は優れた品質を得るが、より長いレンダリング時間を要求する。
本稿では,この2つの戦略を組み合わせたHashPoint法を用いて,効率的な点探索とサンプリングのためのラスタライズ,レンダリングのためのレイマーチングという手法を提案する。
本手法は,カメラビュー内の点をラスタライズし,ハッシュテーブルに整理し,高速検索を容易にする点探索を最適化する。
特に、光線に遭遇する一次表面の適応サンプリングによりレンダリング処理を高速化する。
提案手法は, 最先端のレイトレーシング手法の大幅な高速化を実現し, 合成および実検データセット間で等価あるいは優れた精度を維持する。
コードはhttps://jiahao-ma.github.io/hashpoint/.com/で入手できる。
関連論文リスト
- Flash Cache: Reducing Bias in Radiance Cache Based Inverse Rendering [62.92985004295714]
本稿では,レンダリングに偏りをもたらす近似を回避し,最適化に用いた勾配を求める手法を提案する。
これらのバイアスを除去することで、逆レンダリングに基づくレーダランスキャッシュの一般化が向上し、スペクトル反射のような光輸送効果に挑戦する際の品質が向上することを示す。
論文 参考訳(メタデータ) (2024-09-09T17:59:57Z) - Dense Optical Tracking: Connecting the Dots [82.79642869586587]
DOTは、ビデオにおけるポイントトラッキングの問題を解決するための、新しくてシンプルで効率的な方法である。
OmniMotionのような高度な"ユニバーサルトラッカー"を上回り、CoTrackerのような最良のポイントトラッキングアルゴリズムと同等か、あるいはそれ以上の精度で、DOTが現在の光フロー技術よりもはるかに正確であることを示す。
論文 参考訳(メタデータ) (2023-12-01T18:59:59Z) - RL-based Stateful Neural Adaptive Sampling and Denoising for Real-Time
Path Tracing [1.534667887016089]
モンテカルロ経路追跡は、現実的な画像合成の強力な手法であるが、低いサンプル数での高レベルのノイズに悩まされている。
本稿では,サンプリング重要度ネットワーク,遅延空間エンコーダネットワーク,デノイザネットワークをエンドツーエンドでトレーニングするフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-05T12:39:27Z) - TAPIR: Tracking Any Point with per-frame Initialization and temporal
Refinement [64.11385310305612]
本稿では,ビデオシーケンスを通して任意の物理面上の問合せ点を効果的に追跡する,TAP(Tracking Any Point)の新しいモデルを提案する。
提案手法では,(1)他のフレームの問合せ点に対する適切な候補点マッチングを独立に特定するマッチング段階と,(2)局所的相関に基づいてトラジェクトリと問合せの両方を更新する改良段階の2段階を用いる。
結果として得られたモデルは、DAVISにおける平均約20%の絶対平均ジャカード(AJ)改善によって示されるように、TAP-Vidベンチマークにおける大きなマージンで、すべてのベースライン手法を上回ります。
論文 参考訳(メタデータ) (2023-06-14T17:07:51Z) - FMapping: Factorized Efficient Neural Field Mapping for Real-Time Dense
RGB SLAM [3.6985351289638957]
本稿では,リアルタイム高密度RGB SLAMにおける色付き点クラウドマップの連続的推定を容易にする,効率的なニューラルネットワークマッピングフレームワークであるFMappingを紹介する。
本稿では,シーン表現のための効果的な因子化手法を提案し,シーン再構成の不確実性を低減するためのスライディングウィンドウ戦略を提案する。
論文 参考訳(メタデータ) (2023-06-01T11:51:46Z) - Hierarchical Adaptive Voxel-guided Sampling for Real-time Applications
in Large-scale Point Clouds [6.094829692829813]
本稿では,線形複雑化と高並列化を実現した階層型適応型ボクセル誘導点サンプリング器を提案する。
提案手法は,100倍以上の速度で,最も強力なFPSと競合する性能を実現する。
我々のサンプルは既存のモデルに簡単に統合でき、最小限の労力でランタイムを20$sim$80%削減できる。
論文 参考訳(メタデータ) (2023-05-23T17:45:49Z) - Factorized Inverse Path Tracing for Efficient and Accurate
Material-Lighting Estimation [97.0195314255101]
逆経路追跡は計算に高価であり、反射と放出の間に曖昧さが存在する。
当社のFactized Inverse Path Tracing (FIPT) は, ファクタリング光輸送の定式化によってこれらの課題に対処する。
提案アルゴリズムは, 従来よりも高精度な材料と照明の最適化を実現し, あいまいさの解消に有効である。
論文 参考訳(メタデータ) (2023-04-12T07:46:05Z) - HPointLoc: Point-based Indoor Place Recognition using Synthetic RGB-D
Images [58.720142291102135]
本稿では,屋内環境における視覚的位置認識能力の探索を目的とした,HPointLocという新しいデータセットを提案する。
データセットは人気のあるHabitatシミュレータに基づいており、独自のセンサーデータとオープンデータセットの両方を使用して屋内シーンを生成することができる。
論文 参考訳(メタデータ) (2022-12-30T12:20:56Z) - Fast Non-Rigid Radiance Fields from Monocularized Data [66.74229489512683]
本稿では,不規則に変形するシーンを360度内向きに合成する新しい手法を提案する。
提案手法のコアとなるのは, 空間情報と時間情報の処理を分離し, 訓練と推論を高速化する効率的な変形モジュール, 2) 高速ハッシュ符号化ニューラルラジオアンスフィールドとしての標準シーンを表す静的モジュールである。
どちらの場合も,本手法は従来の手法よりもはるかに高速で,7分未満で収束し,1K解像度でリアルタイムのフレームレートを実現するとともに,生成した新規なビューに対して高い視覚的精度が得られる。
論文 参考訳(メタデータ) (2022-12-02T18:51:10Z) - AdaNeRF: Adaptive Sampling for Real-time Rendering of Neural Radiance
Fields [8.214695794896127]
新たなビュー合成は、スパース観測から直接神経放射場を学習することで、近年革新されている。
この新たなパラダイムによる画像のレンダリングは、ボリュームレンダリング方程式の正確な4分の1は、各光線に対して大量のサンプルを必要とするため、遅い。
本稿では,必要なサンプル点数を最大限に削減する方法を学習し,方向性を示す新しいデュアルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-07-21T05:59:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。