論文の概要: On verifiable quantum advantage with peaked circuit sampling
- arxiv url: http://arxiv.org/abs/2404.14493v2
- Date: Tue, 21 May 2024 17:48:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 17:52:56.633372
- Title: On verifiable quantum advantage with peaked circuit sampling
- Title(参考訳): ピーク回路サンプリングによる検証可能な量子優位性について
- Authors: Scott Aaronson, Yuxuan Zhang,
- Abstract要約: このような回路から1/textpoly(n)$のピーク値を得るには、圧倒的な確率で$tau_p = Omega(tau_r/n)0.19)$が必要である。
また、このモデルでは非自明なピーク性も可能であるという数値的な証拠を与える。
- 参考スコア(独自算出の注目度): 9.551919087634522
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over a decade after its proposal, the idea of using quantum computers to sample hard distributions has remained a key path to demonstrating quantum advantage. Yet a severe drawback remains: verification seems to require classical computation exponential in the system size, $n$. As an attempt to overcome this difficulty, we propose a new candidate for quantum advantage experiments with otherwise random "peaked circuits", i.e., quantum circuits whose outputs have high concentrations on a computational basis state. Naturally, the heavy output string can be used for classical verification. In this work, we analytically and numerically study an explicit model of peaked circuits, in which $\tau_r$ layers of uniformly random gates are augmented by $\tau_p$ layers of gates that are optimized to maximize peakedness. We show that getting $1/\text{poly}(n)$ peakedness from such circuits requires $\tau_{p} = \Omega((\tau_r/n)^{0.19})$ with overwhelming probability. However, we also give numerical evidence that nontrivial peakedness is possible in this model -- decaying exponentially with the number of qubits, but more than can be explained by any approximation where the output of a random quantum circuit is treated as a Haar-random state. This suggests that these peaked circuits have the potential for future verifiable quantum advantage experiments. Our work raises numerous open questions about random peaked circuits, including how to generate them efficiently, and whether they can be distinguished from fully random circuits in classical polynomial time.
- Abstract(参考訳): 提案から10年以上、量子コンピュータを使ってハードディストリビューションをサンプリングするというアイデアは、量子の優位性を示す重要な道のりを歩み続けている。
検証には、システムサイズで古典的な計算指数、$n$が必要と思われる。
この難しさを克服するために、我々はランダムな「ピーク回路」、すなわち計算ベース状態に高濃度の出力を持つ量子回路を用いた量子優位実験の新たな候補を提案する。
当然、重出力文字列は古典的な検証に使用できる。
本研究では,ピーク回路の明示的モデルについて解析的,数値的に検討し,一様ランダムゲートの$\tau_r$層を最大化に最適化した$\tau_p$層で拡張する。
そのような回路から1/\text{poly}(n)$のピーク値を得るには、圧倒的な確率で$\tau_{p} = \Omega((\tau_r/n)^{0.19})$が必要である。
しかし、このモデルでは非自明なピーク性も可能であり、指数関数的に量子ビットの数で崩壊するが、ランダム量子回路の出力がハールランダム状態として扱われる近似によって説明できる以上のものが存在する。
このことは、これらのピーク回路が将来の検証可能な量子優位実験の可能性を示唆している。
我々の研究は、ランダムピーク回路を効率的に生成する方法や、古典多項式時間における完全ランダム回路と区別できるかどうかなど、多くのオープンな疑問を提起する。
関連論文リスト
- Maximising Quantum-Computing Expressive Power through Randomised
Circuits [4.604271571912073]
変分量子アルゴリズム(VQA)は量子優位を得るための有望な道として登場した。
本稿では、ランダム化量子回路を用いて変動波動関数を生成するVQAの新しい手法を数値的に示す。
このランダム回路アプローチは、変動波動関数の表現力と時間コストの間のトレードオフを示す。
論文 参考訳(メタデータ) (2023-12-04T15:04:42Z) - Simulation of IBM's kicked Ising experiment with Projected Entangled
Pair Operator [71.10376783074766]
我々は最近,誤りを軽減した量子回路を用いてエミュレートされた127量子ビットキックド・イジングモデルの古典的シミュレーションを行った。
提案手法はハイゼンベルク図の射影的絡み合ったペア作用素(PEPO)に基づいている。
我々はクリフォード展開理論を開発し、正確な期待値を計算し、それらをアルゴリズムの評価に利用する。
論文 参考訳(メタデータ) (2023-08-06T10:24:23Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
この研究は、局所量子回路の出力分布の学習可能性に関する広範な評価を提供する。
ハイブリッド量子古典アルゴリズムを含む多種多様な学習アルゴリズムにおいて、深度$d=omega(log(n))$ Clifford回路に関連する生成的モデリング問題さえも困難であることを示す。
論文 参考訳(メタデータ) (2022-07-07T08:04:15Z) - Estimating the randomness of quantum circuit ensembles up to 50 qubits [9.775777593425452]
ランダム回路が任意のランダムなユニタリを近似する能力は,その複雑性,表現性,訓練性に影響を及ぼすことを示す。
我々の研究は、大規模テンソルネットワークシミュレーションが量子情報科学におけるオープンな問題に重要なヒントを与える可能性を示唆している。
論文 参考訳(メタデータ) (2022-05-19T23:43:15Z) - Random quantum circuits are approximate unitary $t$-designs in depth
$O\left(nt^{5+o(1)}\right)$ [0.0]
ランダム量子回路は深さ$O(nt5+o(1))$で近似単位の$t$-designsを生成する。
我々の手法は、ガオの量子団結境界とクリフォード群の理にかなわない有効性を含んでいる。
論文 参考訳(メタデータ) (2022-03-30T18:02:08Z) - Gaussian initializations help deep variational quantum circuits escape
from the barren plateau [87.04438831673063]
近年、変分量子回路は量子シミュレーションや量子機械学習に広く用いられている。
しかし、ランダムな構造を持つ量子回路は、回路深さと量子ビット数に関して指数関数的に消える勾配のため、トレーニング容易性が低い。
この結果、ディープ量子回路は実用的なタスクでは実現できないという一般的な信念が導かれる。
論文 参考訳(メタデータ) (2022-03-17T15:06:40Z) - Learnability of the output distributions of local quantum circuits [53.17490581210575]
2つの異なるオラクルモデルにおいて、量子回路Bornマシンの学習可能性について検討する。
我々はまず,超対数深度クリフォード回路の出力分布がサンプル効率良く学習できないという負の結果を示した。
より強力なオラクルモデル、すなわちサンプルに直接アクセスすると、局所的なクリフォード回路の出力分布は計算効率よくPACを学習可能であることを示す。
論文 参考訳(メタデータ) (2021-10-11T18:00:20Z) - Quantum supremacy and hardness of estimating output probabilities of
quantum circuits [0.0]
我々は、出力確率を2-Omega(nlogn)$以内に近似する非集中階層の理論的な複雑さを証明している。
この硬さは、任意の(固定された)回路の任意の開近傍に拡張され、自明なゲートを持つ回路を含むことを示す。
論文 参考訳(メタデータ) (2021-02-03T09:20:32Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Googleの最近の量子超越性実験は、量子コンピューティングがランダムな回路サンプリングという計算タスクを実行する遷移点を示している。
観測された量子ランタイムの利点の制約を、より多くの量子ビットとゲートで検討する。
論文 参考訳(メタデータ) (2020-05-05T20:11:53Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
本稿では、生成した状態の古典的ベクトル形式を生成する効率的な読み出しプロトコルを提案する。
我々のプロトコルは、出力状態が入力行列の行空間にある場合に適合する。
我々の技術ツールの1つは、Gram-Schmidt正則手順を実行するための効率的な量子アルゴリズムである。
論文 参考訳(メタデータ) (2020-04-14T11:05:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。