Advantage Distillation for Quantum Key Distribution
- URL: http://arxiv.org/abs/2404.14733v1
- Date: Tue, 23 Apr 2024 04:27:03 GMT
- Title: Advantage Distillation for Quantum Key Distribution
- Authors: Zhenyu Du, Guoding Liu, Xiongfeng Ma,
- Abstract summary: Building on the entanglement distillation protocol, our framework integrates all the existing key distillation methods.
Our framework can achieve higher key rates, particularly without one-time pad encryption for postprocessing.
- Score: 0.40964539027092917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Enhancing the performance of quantum key distribution is crucial, driving the exploration of various key distillation techniques to increase the key rate and tolerable error rate. It is imperative to develop a comprehensive framework to encapsulate and enhance the existing methods. In this work, we propose an advantage distillation framework for quantum key distribution. Building on the entanglement distillation protocol, our framework integrates all the existing key distillation methods and offers better generalization and performance. Using classical linear codes, our framework can achieve higher key rates, particularly without one-time pad encryption for postprocessing. Our approach provides insights into existing protocols and offers a systematic way for future enhancements of quantum key distribution protocols.
Related papers
- Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - Enhancing Quantum Key Distribution with Entanglement Distillation and Classical Advantage Distillation [0.0]
We present a two-stage distillation scheme concatenating entanglement distillation with classical advantage distillation.
Our scheme achieves finite key rates even in the high-noise regime.
The proposed scheme is well-suited for near-term quantum key distribution tasks.
arXiv Detail & Related papers (2024-10-25T06:40:09Z) - Performance of Cascade and LDPC-codes for Information Reconciliation on Industrial Quantum Key Distribution Systems [69.47813697920358]
We analyze, simulate, optimize, and compare the performance of two prevalent algorithms used for Information Reconciliation.
We focus on their applicability in practical and industrial settings, operating in realistic and application-close conditions.
arXiv Detail & Related papers (2024-08-28T12:51:03Z) - Improved finite-size key rates for discrete-modulated continuous variable quantum key distribution under coherent attacks [0.0]
We consider a prepare-and-measure CVQKD protocol, where Alice chooses from a set of four coherent states and Bob performs a heterodyne measurement.
We provide a security proof against coherent attacks in the finite-size regime, and compute the achievable key rate.
arXiv Detail & Related papers (2024-07-03T13:18:31Z) - Quantum Key Distribution using Expectation Values of Super-classical GHZ
States [0.0]
We propose a new quantum key distribution scheme that is based on the optimum expectation values of maximally entangled Greenberger-Horne-Zeilinger states.
Our protocol makes use of the degrees of freedom in continuously variable angles, thereby increasing the security of the key distribution.
arXiv Detail & Related papers (2023-08-17T21:40:21Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Entanglement-assisted entanglement purification [62.997667081978825]
We present a new class of entanglement-assisted entanglement purification protocols that can generate high-fidelity entanglement from noisy, finite-size ensembles.
Our protocols can deal with arbitrary errors, but are best suited for few errors, and work particularly well for decay noise.
arXiv Detail & Related papers (2020-11-13T19:00:05Z) - Key rates for quantum key distribution protocols with asymmetric noise [0.0]
We consider the key rates achieved in the simplest quantum key distribution protocols, namely the BB84 and the six-state protocols, when non-uniform noise is present in the system.
We show that it can be advantageous to use the basis with higher quantum bit error rate for the key generation.
arXiv Detail & Related papers (2020-02-18T00:05:35Z) - Reconciliation for Practical Quantum Key Distribution with BB84 protocol [0.22099217573031674]
We describe an explicit reconciliation method based on Turbo codes.
We believe that the proposed method can improve the efficiency of quantum key distribution protocols based on discrete quantum states.
arXiv Detail & Related papers (2020-02-16T20:46:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.