論文の概要: Explainable LightGBM Approach for Predicting Myocardial Infarction Mortality
- arxiv url: http://arxiv.org/abs/2404.15029v1
- Date: Tue, 23 Apr 2024 13:35:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 13:51:55.431935
- Title: Explainable LightGBM Approach for Predicting Myocardial Infarction Mortality
- Title(参考訳): 心筋梗塞死亡予測のための説明可能なLightGBM法
- Authors: Ana Letícia Garcez Vicente, Roseval Donisete Malaquias Junior, Roseli A. F. Romero,
- Abstract要約: 心筋梗塞は世界中で死亡の主な原因であり、患者の予後を改善するためには正確なリスク予測が不可欠である。
本稿では,データ前処理タスクの影響について検討し,木組化促進手法を3つ比較し,死亡リスクを予測した。
F1スコアが91,2%、データ前処理なしのLightGBMが91,8%であるのに対し、本手法は既存の機械学習手法と比較して優れた性能を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Myocardial Infarction is a main cause of mortality globally, and accurate risk prediction is crucial for improving patient outcomes. Machine Learning techniques have shown promise in identifying high-risk patients and predicting outcomes. However, patient data often contain vast amounts of information and missing values, posing challenges for feature selection and imputation methods. In this article, we investigate the impact of the data preprocessing task and compare three ensembles boosted tree methods to predict the risk of mortality in patients with myocardial infarction. Further, we use the Tree Shapley Additive Explanations method to identify relationships among all the features for the performed predictions, leveraging the entirety of the available data in the analysis. Notably, our approach achieved a superior performance when compared to other existing machine learning approaches, with an F1-score of 91,2% and an accuracy of 91,8% for LightGBM without data preprocessing.
- Abstract(参考訳): 心筋梗塞は世界中で死亡の主な原因であり、患者の予後を改善するためには正確なリスク予測が不可欠である。
機械学習技術は、リスクの高い患者を特定し、その結果を予測することを約束している。
しかし、患者データには大量の情報と欠落した値が含まれており、特徴選択や計算方法の課題を提起することが多い。
本稿では,脳梗塞患者の死亡リスクを予測するために,データ前処理タスクの影響を調査し,3つのアンサンブル木法を比較した。
さらに,ツリーシェープの付加的説明法を用いて,実行した予測のすべての特徴間の関係を同定し,解析で利用可能なデータ全体を活用する。
F1スコアが91,2%、データ前処理なしでのLightGBMが91,8%である。
関連論文リスト
- Deciphering Cardiac Destiny: Unveiling Future Risks Through Cutting-Edge Machine Learning Approaches [0.0]
本研究の目的は,心停止事故のタイムリー同定のための予測モデルの開発と評価である。
我々は、XGBoost、Gradient Boosting、Naive Bayesといった機械学習アルゴリズムと、リカレントニューラルネットワーク(RNN)によるディープラーニング(DL)アプローチを採用しています。
厳密な実験と検証により,RNNモデルの優れた性能が示された。
論文 参考訳(メタデータ) (2024-09-03T19:18:16Z) - Optimizing Mortality Prediction for ICU Heart Failure Patients: Leveraging XGBoost and Advanced Machine Learning with the MIMIC-III Database [1.5186937600119894]
心臓不全は世界中の何百万人もの人々に影響を与え、生活の質を著しく低下させ、高い死亡率をもたらす。
広範な研究にもかかわらず、ICU患者の心不全と死亡率の関係は、完全には理解されていない。
本研究は、ICD-9コードを用いて、MIMIC-IIIデータベースから18歳以上の1,177人のデータを解析した。
論文 参考訳(メタデータ) (2024-09-03T07:57:08Z) - Data-Driven Machine Learning Approaches for Predicting In-Hospital Sepsis Mortality [0.0]
本研究の目的は,臨床専門家が院内死亡を予測できるように,解釈可能かつ正確なMLモデルを開発することである。
特定基準に基づいてMIMIC-IIIデータベースからICU患者の記録を分析し,関連データを抽出した。
ランダムフォレストモデルは敗血症関連院内死亡の予測に最も効果的であった。
論文 参考訳(メタデータ) (2024-08-03T00:28:25Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Enhancing Mortality Prediction in Heart Failure Patients: Exploring
Preprocessing Methods for Imbalanced Clinical Datasets [0.0]
心不全 (Heart failure, HF) は、患者の管理決定を導く上で、死亡率の正確な予測が重要な役割を果たす重要な疾患である。
本稿では,スケーリング,アウトレーヤ処理,再サンプリングを含む包括的事前処理フレームワークを提案する。
適切な前処理技術と機械学習(ML)アルゴリズムを活用することで,HF患者の死亡予測性能を向上させることを目指す。
論文 参考訳(メタデータ) (2023-09-30T18:31:15Z) - Survival Prediction of Heart Failure Patients using Stacked Ensemble
Machine Learning Algorithm [0.0]
心不全は、我々の時代における主要な健康上の危険問題の1つであり、世界中の死因の1つです。
データマイニングは、医療機関が生成した大量の生データを意味のある情報に変換するプロセスである。
本研究は, 心不全後の生存可能性を予測するためには, 患者から採取した特定の属性のみが必須であることが示唆された。
論文 参考訳(メタデータ) (2021-08-30T16:42:27Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - HINT: Hierarchical Interaction Network for Trial Outcome Prediction
Leveraging Web Data [56.53715632642495]
臨床試験は、有効性、安全性、または患者採用の問題により、不確実な結果に直面する。
本稿では,より一般的な臨床試験結果予測のための階層型Interaction Network(HINT)を提案する。
論文 参考訳(メタデータ) (2021-02-08T15:09:07Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。