Leveraging Visibility Graphs for Enhanced Arrhythmia Classification with Graph Convolutional Networks
- URL: http://arxiv.org/abs/2404.15367v1
- Date: Fri, 19 Apr 2024 13:24:09 GMT
- Title: Leveraging Visibility Graphs for Enhanced Arrhythmia Classification with Graph Convolutional Networks
- Authors: Rafael F. Oliveira, Gladston J. P. Moreira, Vander L. S. Freitas, Eduardo J. S. Luz,
- Abstract summary: Arrhythmias, detectable via electrocardiograms (ECGs), pose significant health risks.
Recent advances in graph-based strategies are aimed at enhancing arrhythmia detection performance.
This study explores graph representations of ECG signals using Visibility Graph (VG) and Vector Visibility Graph (VVG)
- Score: 0.11184789007828977
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Arrhythmias, detectable via electrocardiograms (ECGs), pose significant health risks, emphasizing the need for robust automated identification techniques. Although traditional deep learning methods have shown potential, recent advances in graph-based strategies are aimed at enhancing arrhythmia detection performance. However, effectively representing ECG signals as graphs remains a challenge. This study explores graph representations of ECG signals using Visibility Graph (VG) and Vector Visibility Graph (VVG), coupled with Graph Convolutional Networks (GCNs) for arrhythmia classification. Through experiments on the MIT-BIH dataset, we investigated various GCN architectures and preprocessing parameters. The results reveal that GCNs, when integrated with VG and VVG for signal graph mapping, can classify arrhythmias without the need for preprocessing or noise removal from ECG signals. While both VG and VVG methods show promise, VG is notably more efficient. The proposed approach was competitive compared to baseline methods, although classifying the S class remains challenging, especially under the inter-patient paradigm. Computational complexity, particularly with the VVG method, required data balancing and sophisticated implementation strategies. The source code is publicly available for further research and development at https://github.com/raffoliveira/VG_for_arrhythmia_classification_with_GCN.
Related papers
- Online Graph Learning via Time-Vertex Adaptive Filters: From Theory to Cardiac Fibrillation [37.69303106863453]
We introduce AdaCGP, an online algorithm for adaptive estimation of the Graph Shift Operator (GSO)
Through simulations, we show that AdaCGP performs consistently well across various graph topologies, and achieves improvements in excess of 82% for GSO estimation.
AdaCGP's ability to track changes in graph structure is demonstrated on recordings of ventricular fibrillation dynamics in response to an anti-arrhythmic drug.
arXiv Detail & Related papers (2024-11-03T13:43:51Z) - RobGC: Towards Robust Graph Condensation [61.259453496191696]
Graph neural networks (GNNs) have attracted widespread attention for their impressive capability of graph representation learning.
However, the increasing prevalence of large-scale graphs presents a significant challenge for GNN training due to their computational demands.
We propose graph condensation (GC) to generate an informative compact graph that enables efficient training of GNNs while retaining performance.
arXiv Detail & Related papers (2024-06-19T04:14:57Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - ECG-SL: Electrocardiogram(ECG) Segment Learning, a deep learning method
for ECG signal [19.885905393439014]
We propose a novel ECG-Segment based Learning (ECG-SL) framework to explicitly model the periodic nature of ECG signals.
Based on the structural features, a temporal model is designed to learn the temporal information for various clinical tasks.
The proposed method outperforms the baseline model and shows competitive performances compared with task-specific methods in three clinical applications.
arXiv Detail & Related papers (2023-10-01T23:17:55Z) - From Cluster Assumption to Graph Convolution: Graph-based Semi-Supervised Learning Revisited [51.24526202984846]
Graph-based semi-supervised learning (GSSL) has long been a hot research topic.
graph convolutional networks (GCNs) have become the predominant techniques for their promising performance.
arXiv Detail & Related papers (2023-09-24T10:10:21Z) - Learning ECG Representations based on Manipulated Temporal-Spatial
Reverse Detection [11.615287369669971]
We propose a straightforward but effective approach to learn ECG representations.
Inspired by the temporal and spatial characteristics of ECG, we flip the original signals horizontally, vertically, and both horizontally and vertically.
Results show that the ECG representations learned with our method lead to remarkable performances on the downstream task.
arXiv Detail & Related papers (2022-02-25T02:01:09Z) - Improving Subgraph Recognition with Variational Graph Information
Bottleneck [62.69606854404757]
Subgraph recognition aims at discovering a compressed substructure of a graph that is most informative to the graph property.
This paper introduces a noise injection method to compress the information in the subgraphs, which leads to a novel Variational Graph Information Bottleneck (VGIB) framework.
arXiv Detail & Related papers (2021-12-18T10:51:13Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Diversified Multiscale Graph Learning with Graph Self-Correction [55.43696999424127]
We propose a diversified multiscale graph learning model equipped with two core ingredients.
A graph self-correction (GSC) mechanism to generate informative embedded graphs, and a diversity boosting regularizer (DBR) to achieve a comprehensive characterization of the input graph.
Experiments on popular graph classification benchmarks show that the proposed GSC mechanism leads to significant improvements over state-of-the-art graph pooling methods.
arXiv Detail & Related papers (2021-03-17T16:22:24Z) - A Graph-constrained Changepoint Detection Approach for ECG Segmentation [5.209323879611983]
We introduce a novel graph-based optimal changepoint detection (GCCD) method for reliable detection of R-peak positions without employing any preprocessing step.
Based on the MIT-BIH arrhythmia (MIT-BIH-AR) database, the proposed method achieves overall sensitivity Sen = 99.76, positive predictivity PPR = 99.68, and detection error rate DER = 0.55.
arXiv Detail & Related papers (2020-04-24T23:41:41Z) - Multi-Lead ECG Classification via an Information-Based Attention
Convolutional Neural Network [1.1720399305661802]
One-dimensional convolutional neural networks (CNN) have proven to be effective in pervasive classification tasks.
We implement the Residual connection and design a structure which can learn the weights from the information contained in different channels in the input feature map.
An indicator named mean square deviation is introduced to monitor the performance of a particular model segment in the classification task.
arXiv Detail & Related papers (2020-03-25T02:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.