Integration of Mixture of Experts and Multimodal Generative AI in Internet of Vehicles: A Survey
- URL: http://arxiv.org/abs/2404.16356v1
- Date: Thu, 25 Apr 2024 06:22:21 GMT
- Title: Integration of Mixture of Experts and Multimodal Generative AI in Internet of Vehicles: A Survey
- Authors: Minrui Xu, Dusit Niyato, Jiawen Kang, Zehui Xiong, Abbas Jamalipour, Yuguang Fang, Dong In Kim, Xuemin, Shen,
- Abstract summary: Generative AI (GAI) can enhance the cognitive, reasoning, and planning capabilities of intelligent modules in the Internet of Vehicles (IoV)
We present the fundamentals of GAI, MoE, and their interplay applications in IoV.
We discuss the potential integration of MoE and GAI in IoV, including distributed perception and monitoring, collaborative decision-making and planning, and generative modeling and simulation.
- Score: 82.84057882105931
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative AI (GAI) can enhance the cognitive, reasoning, and planning capabilities of intelligent modules in the Internet of Vehicles (IoV) by synthesizing augmented datasets, completing sensor data, and making sequential decisions. In addition, the mixture of experts (MoE) can enable the distributed and collaborative execution of AI models without performance degradation between connected vehicles. In this survey, we explore the integration of MoE and GAI to enable Artificial General Intelligence in IoV, which can enable the realization of full autonomy for IoV with minimal human supervision and applicability in a wide range of mobility scenarios, including environment monitoring, traffic management, and autonomous driving. In particular, we present the fundamentals of GAI, MoE, and their interplay applications in IoV. Furthermore, we discuss the potential integration of MoE and GAI in IoV, including distributed perception and monitoring, collaborative decision-making and planning, and generative modeling and simulation. Finally, we present several potential research directions for facilitating the integration.
Related papers
- Generative Diffusion-based Contract Design for Efficient AI Twins Migration in Vehicular Embodied AI Networks [55.15079732226397]
Embodied AI is a rapidly advancing field that bridges the gap between cyberspace and physical space.
In VEANET, embodied AI twins act as in-vehicle AI assistants to perform diverse tasks supporting autonomous driving.
arXiv Detail & Related papers (2024-10-02T02:20:42Z) - GenAI-powered Multi-Agent Paradigm for Smart Urban Mobility: Opportunities and Challenges for Integrating Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) with Intelligent Transportation Systems [10.310791311301962]
This paper explores the transformative potential of large language models (LLMs) and emerging Retrieval-Augmented Generation (RAG) technologies.
We propose a conceptual framework aimed at developing multi-agent systems capable of intelligently and conversationally delivering smart mobility services.
arXiv Detail & Related papers (2024-08-31T16:14:42Z) - From Generative AI to Generative Internet of Things: Fundamentals,
Framework, and Outlooks [82.964958051535]
Generative Artificial Intelligence (GAI) possesses the capabilities of generating realistic data and facilitating advanced decision-making.
By integrating GAI into modern Internet of Things (IoT), Generative Internet of Things (GIoT) is emerging and holds immense potential to revolutionize various aspects of society.
arXiv Detail & Related papers (2023-10-27T02:58:11Z) - Fostering new Vertical and Horizontal IoT Applications with Intelligence
Everywhere [8.208838459484676]
Intelligence Everywhere is predicated on the seamless integration of IoT networks transporting a vast amount of data streams.
This paper discusses the state-of-the-art research and the principles of the Intelligence Everywhere framework.
It also introduces a novel perspective for the development of horizontal IoT applications.
arXiv Detail & Related papers (2023-09-30T11:59:39Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
Artificial General Intelligence (AGI) possesses the capacity to comprehend, learn, and execute tasks with human cognitive abilities.
This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the Internet of Things.
The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education.
arXiv Detail & Related papers (2023-09-14T05:43:36Z) - Integrating Generative Artificial Intelligence in Intelligent Vehicle
Systems [4.724940029079736]
As the automotive industry progressively integrates AI, generative artificial intelligence technologies hold the potential to revolutionize user interactions.
We provide an overview of current applications of generative artificial intelligence in the automotive domain, emphasizing speech, audio, vision, and multimodal interactions.
We outline critical future research areas, including domain adaptability, alignment, multimodal integration and others, as well as, address the challenges and risks associated with ethics.
arXiv Detail & Related papers (2023-05-15T09:09:40Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
In vehicular mixed reality (MR) Metaverse, distance between physical and virtual entities can be overcome.
Large-scale traffic and driving simulation via realistic data collection and fusion from the physical world is difficult and costly.
We propose an autonomous driving architecture, where generative AI is leveraged to synthesize unlimited conditioned traffic and driving data in simulations.
arXiv Detail & Related papers (2023-02-16T16:54:10Z) - The Internet of Senses: Building on Semantic Communications and Edge
Intelligence [67.75406096878321]
The Internet of Senses (IoS) holds the promise of flawless telepresence-style communication for all human receptors'
We elaborate on how the emerging semantic communications and Artificial Intelligence (AI)/Machine Learning (ML) paradigms may satisfy the requirements of IoS use cases.
arXiv Detail & Related papers (2022-12-21T03:37:38Z) - SMASH: a Semantic-enabled Multi-agent Approach for Self-adaptation of
Human-centered IoT [0.8602553195689512]
This paper presents SMASH: a multi-agent approach for self-adaptation of IoT applications in human-centered environments.
SMASH agents are provided with a 4-layer architecture based on the BDI agent model that integrates human values with goal-reasoning, planning, and acting.
arXiv Detail & Related papers (2021-05-31T12:33:27Z) - Gateway Controller with Deep Sensing: Learning to be Autonomic in
Intelligent Internet of Things [0.0]
The Internet of Things will revolutionize the Future Internet through ubiquitous sensing.
One of the challenges of having the hundreds of billions of devices that are estimated to be deployed would be rise of an enormous amount of data.
This paper presents an approach as a controller solution and designed specifically for autonomous management, connectivity and data interoperability in an IoT gateway.
arXiv Detail & Related papers (2020-09-18T06:22:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.