T-Explainer: A Model-Agnostic Explainability Framework Based on Gradients
- URL: http://arxiv.org/abs/2404.16495v2
- Date: Tue, 6 Aug 2024 15:03:50 GMT
- Title: T-Explainer: A Model-Agnostic Explainability Framework Based on Gradients
- Authors: Evandro S. Ortigossa, Fábio F. Dias, Brian Barr, Claudio T. Silva, Luis Gustavo Nonato,
- Abstract summary: We introduce T-Explainer, a novel local additive attribution explainer based on Taylor expansion.
It has desirable properties, such as local accuracy and consistency, making T-Explainer stable over multiple runs.
- Score: 5.946429628497358
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development of machine learning applications has increased significantly in recent years, motivated by the remarkable ability of learning-powered systems to discover and generalize intricate patterns hidden in massive datasets. Modern learning models, while powerful, often have a level of complexity that renders them opaque black boxes, resulting in a notable lack of transparency that hinders our ability to decipher their reasoning. Opacity challenges the interpretability and practical application of machine learning, especially in critical domains where understanding the underlying reasons is essential for informed decision-making. Explainable Artificial Intelligence (XAI) rises to address that challenge, unraveling the complexity of black boxes by providing elucidating explanations. Among the various XAI approaches, feature attribution/importance stands out for its capacity to delineate the significance of input features in the prediction process. However, most existing attribution methods have limitations, such as instability, when divergent explanations may result from similar or even the same instance. This work introduces T-Explainer, a novel local additive attribution explainer based on Taylor expansion. It has desirable properties, such as local accuracy and consistency, making T-Explainer stable over multiple runs. We demonstrate T-Explainer's effectiveness in quantitative benchmark experiments against well-known attribution methods. Additionally, we provide several tools to evaluate and visualize explanations, turning T-Explainer into a comprehensive XAI framework.
Related papers
- Even-if Explanations: Formal Foundations, Priorities and Complexity [18.126159829450028]
We show that both linear and tree-based models are strictly more interpretable than neural networks.
We introduce a preference-based framework that enables users to personalize explanations based on their preferences.
arXiv Detail & Related papers (2024-01-17T11:38:58Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Recognizing Unseen Objects via Multimodal Intensive Knowledge Graph
Propagation [68.13453771001522]
We propose a multimodal intensive ZSL framework that matches regions of images with corresponding semantic embeddings.
We conduct extensive experiments and evaluate our model on large-scale real-world data.
arXiv Detail & Related papers (2023-06-14T13:07:48Z) - Shapelet-Based Counterfactual Explanations for Multivariate Time Series [0.9990687944474738]
We develop a model agnostic multivariate time series (MTS) counterfactual explanation algorithm.
We test our approach on a real-life solar flare prediction dataset and prove that our approach produces high-quality counterfactuals.
In addition to being visually interpretable, our explanations are superior in terms of proximity, sparsity, and plausibility.
arXiv Detail & Related papers (2022-08-22T17:33:31Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
Explainable Artificial Intelligence (XAI) is an emerging research field bringing transparency to highly complex machine learning (ML) models.
This paper offers a comprehensive overview over techniques that apply XAI practically for improving various properties of ML models.
We show empirically through experiments on toy and realistic settings how explanations can help improve properties such as model generalization ability or reasoning.
arXiv Detail & Related papers (2022-03-15T15:44:28Z) - Rational Shapley Values [0.0]
Most popular tools for post-hoc explainable artificial intelligence (XAI) are either insensitive to context or difficult to summarize.
I introduce emphrational Shapley values, a novel XAI method that synthesizes and extends these seemingly incompatible approaches.
I leverage tools from decision theory and causal modeling to formalize and implement a pragmatic approach that resolves a number of known challenges in XAI.
arXiv Detail & Related papers (2021-06-18T15:45:21Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
We design a framework to generate counterfactuals for raw data instances with the proposed Attribute-Informed Perturbation (AIP)
By utilizing generative models conditioned with different attributes, counterfactuals with desired labels can be obtained effectively and efficiently.
Experimental results on real-world texts and images demonstrate the effectiveness, sample quality as well as efficiency of our designed framework.
arXiv Detail & Related papers (2021-01-18T08:37:13Z) - Efficient computation of contrastive explanations [8.132423340684568]
We study the relation of contrastive and counterfactual explanations.
We propose a 2-phase algorithm for efficiently computing (plausible) positives of many standard machine learning models.
arXiv Detail & Related papers (2020-10-06T11:50:28Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
We review recent works in the direction to attain Explainable Reinforcement Learning (XRL)
In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box.
arXiv Detail & Related papers (2020-08-15T10:11:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.