論文の概要: Autonomous LLM-driven research from data to human-verifiable research papers
- arxiv url: http://arxiv.org/abs/2404.17605v1
- Date: Wed, 24 Apr 2024 23:15:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 20:10:08.319753
- Title: Autonomous LLM-driven research from data to human-verifiable research papers
- Title(参考訳): 自律型LCM駆動型データから人間検証研究論文へ
- Authors: Tal Ifargan, Lukas Hafner, Maor Kern, Ori Alcalay, Roy Kishony,
- Abstract要約: 完全なステップワイズプロセスを通じてインタラクションをガイドする自動化プラットフォームを構築しています。
注釈付きデータのみを提供するモードでは、データペーパーは仮説を立て、計画を立て、分析コードを書き、解釈し、結果を生成し、解釈した。
我々は、トレーサビリティ、透明性、妥当性を高めながら、AIによる科学的発見の加速の可能性を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As AI promises to accelerate scientific discovery, it remains unclear whether fully AI-driven research is possible and whether it can adhere to key scientific values, such as transparency, traceability and verifiability. Mimicking human scientific practices, we built data-to-paper, an automation platform that guides interacting LLM agents through a complete stepwise research process, while programmatically back-tracing information flow and allowing human oversight and interactions. In autopilot mode, provided with annotated data alone, data-to-paper raised hypotheses, designed research plans, wrote and debugged analysis codes, generated and interpreted results, and created complete and information-traceable research papers. Even though research novelty was relatively limited, the process demonstrated autonomous generation of de novo quantitative insights from data. For simple research goals, a fully-autonomous cycle can create manuscripts which recapitulate peer-reviewed publications without major errors in about 80-90%, yet as goal complexity increases, human co-piloting becomes critical for assuring accuracy. Beyond the process itself, created manuscripts too are inherently verifiable, as information-tracing allows to programmatically chain results, methods and data. Our work thereby demonstrates a potential for AI-driven acceleration of scientific discovery while enhancing, rather than jeopardizing, traceability, transparency and verifiability.
- Abstract(参考訳): AIが科学的発見を加速することを約束しているため、完全なAI駆動型研究が可能であるか、透明性、トレーサビリティ、検証可能性といった重要な科学的価値に準拠できるかどうかは不明だ。
人間の科学的実践を模倣して、私たちは、完全な段階的な研究プロセスを通じて、LLMエージェント間のインタラクションをガイドする自動化プラットフォームであるData-to-paperを構築しました。
自動操縦モードでは、注釈付きデータだけで、データ・ツー・ペーパーの仮説を立て、研究計画を設計し、分析コードを書き、デバッグし、結果を生成して解釈し、完全な情報追跡可能な研究論文を作成した。
研究の新規性は比較的限られていたが、このプロセスはデータからデ・ノボの定量的洞察を自律的に生成することを示した。
単純な研究目的のために、完全に自律的なサイクルは、80~90%の誤差を伴わずにピアレビューされた出版物を再カプセル化する原稿を作成することができるが、目標の複雑さが増大するにつれて、人間の共同操縦は精度を測るために重要になる。
プロセス自体を超えて、作成された原稿も本質的に検証可能であり、情報追跡によって結果、方法、データをプログラム的に連鎖することができる。
我々の研究は、危険、トレーサビリティ、透明性、検証可能性ではなく、AIによる科学的発見の加速の可能性を示している。
関連論文リスト
- AIGS: Generating Science from AI-Powered Automated Falsification [17.50867181053229]
本稿では,重要な研究プロセスを代表する役割を担ったマルチエージェントシステムである,フルプロセスAIGSシステムのベビーステップとして,Baby-AIGSを提案する。
3つのタスクの実験では、Baby-AIGSは経験豊富な人間の研究者と同等ではないが、有意義な科学的発見を産み出すことができた。
論文 参考訳(メタデータ) (2024-11-17T13:40:35Z) - CurateGPT: A flexible language-model assisted biocuration tool [0.6425885600880427]
ジェネレーティブAIは、人間主導のキュレーションを支援する新しい可能性を開いた。
CurateGPTはキュレーションプロセスの合理化を図り、共同作業と効率性の向上を図っている。
これにより、キュレーター、研究者、エンジニアがキュレーションの取り組みを拡大し、科学データ量の増加に追随するのに役立つ。
論文 参考訳(メタデータ) (2024-10-29T20:00:04Z) - CycleResearcher: Improving Automated Research via Automated Review [37.03497673861402]
本稿では,オープンソースの後学習型大規模言語モデル(LLM)を,自動研究とレビューの全サイクルを遂行する自律エージェントとして活用する可能性について検討する。
これらのモデルをトレーニングするために、現実の機械学習研究とピアレビューダイナミクスを反映した2つの新しいデータセットを開発した。
研究において、CycleResearcherモデルが作成した論文は、シミュレーションされたピアレビューで5.36点を獲得し、人間の専門家による5.24点を上回り、受け入れられた論文の5.69点に近づいた。
論文 参考訳(メタデータ) (2024-10-28T08:10:21Z) - O1 Replication Journey: A Strategic Progress Report -- Part 1 [52.062216849476776]
本稿では,O1 Replication Journeyに具体化された人工知能研究の先駆的アプローチを紹介する。
我々の方法論は、長期化したチームベースのプロジェクトの不規則性を含む、現代のAI研究における重要な課題に対処する。
本稿では,モデルにショートカットだけでなく,完全な探索プロセスの学習を促す旅行学習パラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-08T15:13:01Z) - Data-Centric AI in the Age of Large Language Models [51.20451986068925]
本稿では,大規模言語モデル(LLM)に着目した,AI研究におけるデータ中心の視点を提案する。
本研究では,LLMの発達段階(事前学習や微調整など)や推論段階(文脈内学習など)において,データが有効であることを示す。
データを中心とした4つのシナリオを特定し、データ中心のベンチマークとデータキュレーション、データ属性、知識伝達、推論コンテキスト化をカバーします。
論文 参考訳(メタデータ) (2024-06-20T16:34:07Z) - Artificial intelligence to automate the systematic review of scientific
literature [0.0]
我々は過去15年間に提案されたAI技術について,研究者が科学的文献の体系的な分析を行うのを助けるために調査を行った。
現在サポートされているタスク、適用されるアルゴリズムの種類、34の初等研究で提案されているツールについて説明する。
論文 参考訳(メタデータ) (2024-01-13T19:12:49Z) - Generative AI in Writing Research Papers: A New Type of Algorithmic Bias
and Uncertainty in Scholarly Work [0.38850145898707145]
大規模言語モデル(LLM)と生成AIツールは、バイアスを特定し、対処する上での課題を提示している。
生成型AIツールは、不正な一般化、幻覚、レッド・チーム・プロンプトのような敵攻撃を目標とする可能性がある。
研究原稿の執筆過程に生成AIを組み込むことで,新しいタイプの文脈依存型アルゴリズムバイアスがもたらされることがわかった。
論文 参考訳(メタデータ) (2023-12-04T04:05:04Z) - On Responsible Machine Learning Datasets with Fairness, Privacy, and Regulatory Norms [56.119374302685934]
AI技術の信頼性に関する深刻な懸念があった。
機械学習とディープラーニングのアルゴリズムは、開発に使用されるデータに大きく依存する。
本稿では,責任あるルーブリックを用いてデータセットを評価するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-24T14:01:53Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
我々は,データ拡張アルゴリズムの適用分野,使用するアルゴリズムの種類,重要な研究動向,時間経過に伴う研究の進展,およびデータ拡張文学における研究ギャップを同定する。
我々は、読者がデータ拡張の可能性を理解し、将来の研究方向を特定し、データ拡張研究の中で質問を開くことを期待する。
論文 参考訳(メタデータ) (2022-07-18T11:38:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。