Toward Sustainable GenAI using Generation Directives for Carbon-Friendly Large Language Model Inference
- URL: http://arxiv.org/abs/2403.12900v1
- Date: Tue, 19 Mar 2024 16:53:53 GMT
- Title: Toward Sustainable GenAI using Generation Directives for Carbon-Friendly Large Language Model Inference
- Authors: Baolin Li, Yankai Jiang, Vijay Gadepally, Devesh Tiwari,
- Abstract summary: This paper presents Sprout, an innovative framework designed to reduce the carbon footprint of generative Large Language Model (LLM) inference services.
Our proposed method balances the need for ecological sustainability with the demand for high-quality generation outcomes.
We demonstrate a significant reduction in carbon emissions by over 40% in real-world evaluations using the Llama2 and global electricity grid data.
- Score: 8.567865555551911
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of Generative Artificial Intelligence (GenAI) across diverse sectors raises significant environmental concerns, notably the carbon emissions from their cloud and high performance computing (HPC) infrastructure. This paper presents Sprout, an innovative framework designed to address these concerns by reducing the carbon footprint of generative Large Language Model (LLM) inference services. Sprout leverages the innovative concept of "generation directives" to guide the autoregressive generation process, thereby enhancing carbon efficiency. Our proposed method meticulously balances the need for ecological sustainability with the demand for high-quality generation outcomes. Employing a directive optimizer for the strategic assignment of generation directives to user prompts and an original offline quality evaluator, Sprout demonstrates a significant reduction in carbon emissions by over 40% in real-world evaluations using the Llama2 LLM and global electricity grid data. This research marks a critical step toward aligning AI technology with sustainable practices, highlighting the potential for mitigating environmental impacts in the rapidly expanding domain of generative artificial intelligence.
Related papers
- Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
Generative AI (GAI) holds immense potential to reduce carbon emissions of Artificial Intelligence of Things (AIoT)
In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT.
We propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules.
arXiv Detail & Related papers (2024-04-28T05:46:28Z) - Green AI: Exploring Carbon Footprints, Mitigation Strategies, and Trade Offs in Large Language Model Training [9.182429523979598]
We evaluate the CO2 emissions of well-known large language models, which have an especially high carbon footprint due to their significant amount of model parameters.
We argue for the training of LLMs in a way that is responsible and sustainable by suggesting measures for reducing carbon emissions.
arXiv Detail & Related papers (2024-04-01T15:01:45Z) - Recommendations for public action towards sustainable generative AI
systems [0.0]
This paper presents the components of the environmental footprint of generative AI.
It highlights the massive CO2 emissions and water consumption associated with training large language models.
The paper also explores the factors and characteristics of models that have an influence on their environmental footprint.
arXiv Detail & Related papers (2024-01-04T08:55:53Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
Training large transformers using next-token prediction has given rise to groundbreaking advancements in AI.
While this generative AI approach has produced impressive results, it heavily leans on human supervision.
This strong reliance on human oversight poses a significant hurdle to the advancement of AI innovation.
We propose a novel paradigm termed Exploratory AI (EAI) aimed at autonomously generating high-quality training data.
arXiv Detail & Related papers (2023-10-13T07:03:39Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
This study seeks to address the demands of high-performance machine learning models with environmental sustainability.
Traditional machine learning algorithms, such as Decision Trees and Random Forests, demonstrate robust efficiency and performance.
However, superior outcomes were obtained with optimised configurations, albeit with a commensurate increase in resource consumption.
arXiv Detail & Related papers (2023-07-01T15:18:00Z) - Guiding AI-Generated Digital Content with Wireless Perception [69.51950037942518]
We introduce an integration of wireless perception with AI-generated content (AIGC) to improve the quality of digital content production.
The framework employs a novel multi-scale perception technology to read user's posture, which is difficult to describe accurately in words, and transmits it to the AIGC model as skeleton images.
Since the production process imposes the user's posture as a constraint on the AIGC model, it makes the generated content more aligned with the user's requirements.
arXiv Detail & Related papers (2023-03-26T04:39:03Z) - Eco2AI: carbon emissions tracking of machine learning models as the
first step towards sustainable AI [47.130004596434816]
In eco2AI we put emphasis on accuracy of energy consumption tracking and correct regional CO2 emissions accounting.
The motivation also comes from the concept of AI-based green house gases sequestrating cycle with both Sustainable AI and Green AI pathways.
arXiv Detail & Related papers (2022-07-31T09:34:53Z) - Sustainable AI: Environmental Implications, Challenges and Opportunities [13.089123643565724]
We characterize the carbon footprint of AI computing by examining the model development cycle across industry-scale machine learning use cases.
We present an end-to-end analysis for what and how hardware-software design and at-scale optimization can help reduce the overall carbon footprint of AI.
arXiv Detail & Related papers (2021-10-30T23:36:10Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
We introduce a framework for tracking realtime energy consumption and carbon emissions.
We create a leaderboard for energy efficient reinforcement learning algorithms.
We propose strategies for mitigation of carbon emissions and reduction of energy consumption.
arXiv Detail & Related papers (2020-01-31T05:12:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.