論文の概要: Permutation-equivariant quantum convolutional neural networks
- arxiv url: http://arxiv.org/abs/2404.18198v1
- Date: Sun, 28 Apr 2024 14:34:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 17:33:28.858035
- Title: Permutation-equivariant quantum convolutional neural networks
- Title(参考訳): 置換同変量子畳み込みニューラルネットワーク
- Authors: Sreetama Das, Filippo Caruso,
- Abstract要約: 等価量子畳み込みニューラルネットワーク(EQCNN)のアーキテクチャを$S_n$とそのサブグループに適応させる。
S_n$のサブグループの場合、MNISTデータセットを用いた数値計算の結果、非同変QCNNよりも高い分類精度を示す。
- 参考スコア(独自算出の注目度): 1.7034813545878589
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Symmetric group $S_{n}$ manifests itself in large classes of quantum systems as the invariance of certain characteristics of a quantum state with respect to permuting the qubits. The subgroups of $S_{n}$ arise, among many other contexts, to describe label symmetry of classical images with respect to spatial transformations, e.g. reflection or rotation. Equipped with the formalism of geometric quantum machine learning, in this work we propose the architectures of equivariant quantum convolutional neural networks (EQCNNs) adherent to $S_{n}$ and its subgroups. We demonstrate that a careful choice of pixel-to-qubit embedding order can facilitate easy construction of EQCNNs for small subgroups of $S_{n}$. Our novel EQCNN architecture corresponding to the full permutation group $S_{n}$ is built by applying all possible QCNNs with equal probability, which can also be conceptualized as a dropout strategy in quantum neural networks. For subgroups of $S_{n}$, our numerical results using MNIST datasets show better classification accuracy than non-equivariant QCNNs. The $S_{n}$-equivariant QCNN architecture shows significantly improved training and test performance than non-equivariant QCNN for classification of connected and non-connected graphs. When trained with sufficiently large number of data, the $S_{n}$-equivariant QCNN shows better average performance compared to $S_{n}$-equivariant QNN . These results contribute towards building powerful quantum machine learning architectures in permutation-symmetric systems.
- Abstract(参考訳): シンメトリー群 $S_{n}$ は、量子系の大きなクラスにおいて、量子ビットの置換に関する量子状態の特定の性質の不変性として現れている。
S_{n}$ の部分群は、他の多くの文脈において、空間変換、eg反射、回転に関して古典的な画像のラベル対称性を記述するために生じる。
等変量子畳み込みニューラルネットワーク(EQCNN)のアーキテクチャを$S_{n}$とその部分群に適応させる。
S_{n}$ の小さな部分群に対する EQCNN の構築が容易であることを示す。
完全置換群である$S_{n}$に対応する新しいEQCNNアーキテクチャは、量子ニューラルネットワークにおけるドロップアウト戦略として概念化できる全てのQCNNを等確率で適用することによって構築される。
S_{n}$のサブグループの場合、MNISTデータセットを用いた数値計算の結果、非同変QCNNよりも高い分類精度を示す。
S_{n}$-equivariant QCNNアーキテクチャは、連結グラフと非連結グラフの分類において、非等価QCNNよりもトレーニングとテスト性能が大幅に向上している。
十分な数のデータで訓練すると、$S_{n}$-equivariant QCNNは$S_{n}$-equivariant QNNよりも平均性能がよい。
これらの結果は、置換対称システムにおける強力な量子機械学習アーキテクチャの構築に寄与する。
関連論文リスト
- Projected Stochastic Gradient Descent with Quantum Annealed Binary
Gradients [52.99208464423978]
重み付きニューラルネットワークのトレーニングに適した,新しいレイヤワイドオプティマイザであるQP-SBGDを提案する。
BNNは、深層学習モデルの計算要求とエネルギー消費を最小限の精度で削減する。
提案アルゴリズムは階層的に実装されており,リソース制限量子ハードウェア上での大規模ネットワークのトレーニングに適している。
論文 参考訳(メタデータ) (2023-10-23T17:32:38Z) - Approximately Equivariant Quantum Neural Network for $p4m$ Group
Symmetries in Images [30.01160824817612]
本研究では、平面$p4m$対称性に基づく画像分類のための同変量子畳み込みニューラルネットワーク(EquivQCNNs)を提案する。
2次元イジングモデルの位相検出や拡張MNISTデータセットの分類など、さまざまなユースケースでテストされた結果を示す。
論文 参考訳(メタデータ) (2023-10-03T18:01:02Z) - Variational Quantum Neural Networks (VQNNS) in Image Classification [0.0]
本稿では,量子最適化アルゴリズムを用いて量子ニューラルネットワーク(QNN)のトレーニングを行う方法について検討する。
本稿では、変分量子ニューラルネットワーク(VQNN)と呼ばれる入力層として、変分パラメータ化回路を組み込んだQNN構造を作成する。
VQNNは、MNIST桁認識(複雑でない)とクラック画像分類データセットで実験され、QNNよりも少ない時間で、適切なトレーニング精度で計算を収束させる。
論文 参考訳(メタデータ) (2023-03-10T11:24:32Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
この研究は、他のニューラルネットワークの重みや勾配を処理できるニューラルネットワークの設計を研究する。
隠れた層状ニューロンには固有の順序がないため, 深いフィードフォワードネットワークの重みに生じる置換対称性に着目する。
実験の結果, 置換同変ニューラル関数は多種多様なタスクに対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-02-27T18:52:38Z) - Theoretical Guarantees for Permutation-Equivariant Quantum Neural
Networks [0.0]
等変量子ニューラルネットワーク(QNN)の構築方法を示す。
我々は、不毛の高原に苦しめられず、すぐに過度なパラメータ化に達し、少量のデータからよく一般化されることを証明した。
我々の研究は、同変QNNに対する最初の理論的保証を提供し、GQMLの極端なパワーとポテンシャルを示している。
論文 参考訳(メタデータ) (2022-10-18T16:35:44Z) - Theory for Equivariant Quantum Neural Networks [0.0]
本質的に任意の対称性群に対して等変量子ニューラルネットワーク(EQNN)を設計するための理論的枠組みを提案する。
私たちのフレームワークは、量子機械学習のほぼすべての領域に簡単に適用できます。
論文 参考訳(メタデータ) (2022-10-16T15:42:21Z) - A heterogeneous group CNN for image super-resolution [127.2132400582117]
畳み込みニューラルネットワーク(CNN)は、深いアーキテクチャを通して顕著な性能を得た。
異種グループSR CNN(HGSRCNN)を,異なるタイプの構造情報を利用して高品質な画像を得る。
論文 参考訳(メタデータ) (2022-09-26T04:14:59Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - A Quantum Convolutional Neural Network on NISQ Devices [0.9831489366502298]
本稿では,畳み込みニューラルネットワークに着想を得た量子畳み込みニューラルネットワークを提案する。
我々のモデルは、画像認識タスクの特定のノイズに対して堅牢である。
これは、ビッグデータ時代の情報を処理するために、量子パワーを活用する可能性を開く。
論文 参考訳(メタデータ) (2021-04-14T15:07:03Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
量子ニューラルネットワーク(QNN)は、量子スピードアップを達成するために古典的ニューラルネットワークの一般化として提案されている。
QNNのトレーニングには、入力キュービット数に指数関数的に勾配速度がなくなるため、非常に大きなボトルネックが存在する。
木テンソルとステップ制御された構造を持つQNNを二分分類に適用し,ランダムな構造を持つQNNと比較してより高速な収束率と精度を示す。
論文 参考訳(メタデータ) (2020-11-12T08:32:04Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。