TextureCrop: Enhancing Synthetic Image Detection through Texture-based Cropping
- URL: http://arxiv.org/abs/2407.15500v4
- Date: Thu, 16 Jan 2025 10:20:32 GMT
- Title: TextureCrop: Enhancing Synthetic Image Detection through Texture-based Cropping
- Authors: Despina Konstantinidou, Christos Koutlis, Symeon Papadopoulos,
- Abstract summary: Synthetic Image Detection (SID) methods are essential for identifying AI-generated content online.
We propose TextureCrop, an image pre-processing component that can be plugged in any pre-trained SID model to improve its performance.
Experimental results demonstrate a consistent improvement in AUC across various detectors by 6.1% compared to center cropping and by 15% compared to resizing.
- Score: 12.315110846944906
- License:
- Abstract: Generative AI technologies produce increasingly realistic imagery, which, despite its potential for creative applications, can also be misused to produce misleading and harmful content. This renders Synthetic Image Detection (SID) methods essential for identifying AI-generated content online. State-of-the-art SID methods typically resize or center-crop input images due to architectural or computational constraints, which hampers the detection of artifacts that appear in high-resolution images. To address this limitation, we propose TextureCrop, an image pre-processing component that can be plugged in any pre-trained SID model to improve its performance. By focusing on high-frequency image parts where generative artifacts are prevalent, TextureCrop enhances SID performance with manageable memory requirements. Experimental results demonstrate a consistent improvement in AUC across various detectors by 6.1% compared to center cropping and by 15% compared to resizing, across high-resolution images from the Forensynths, Synthbuster and TWIGMA datasets. Code available at https : //github.com/mever-team/texture-crop.
Related papers
- A Sanity Check for AI-generated Image Detection [49.08585395873425]
We propose AIDE (AI-generated Image DEtector with Hybrid Features) to detect AI-generated images.
AIDE achieves +3.5% and +4.6% improvements to state-of-the-art methods.
arXiv Detail & Related papers (2024-06-27T17:59:49Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGID is a training-free and model-agnostic method for robust AI-generated image detection.
RIGID significantly outperforms existing trainingbased and training-free detectors.
arXiv Detail & Related papers (2024-05-30T14:49:54Z) - SIDBench: A Python Framework for Reliably Assessing Synthetic Image Detection Methods [9.213926755375024]
The creation of completely synthetic images presents a unique challenge.
There is often a large gap between experimental results on benchmark datasets and the performance of methods in the wild.
This paper introduces a benchmarking framework that integrates several state-of-the-art SID models.
arXiv Detail & Related papers (2024-04-29T09:50:16Z) - Leveraging Representations from Intermediate Encoder-blocks for Synthetic Image Detection [13.840950434728533]
State-of-the-art Synthetic Image Detection (SID) research has led to strong evidence on the advantages of feature extraction from foundation models.
We leverage the image representations extracted by intermediate Transformer blocks of CLIP's image-encoder via a lightweight network.
Our method is compared against the state-of-the-art by evaluating it on 20 test datasets and exhibits an average +10.6% absolute performance improvement.
arXiv Detail & Related papers (2024-02-29T12:18:43Z) - Hybrid Training of Denoising Networks to Improve the Texture Acutance of Digital Cameras [3.400056739248712]
We propose a mixed training procedure for image restoration neural networks, relying on both natural and synthetic images, that yields a strong improvement of this acutance metric without impairing fidelity terms.
The feasibility of the approach is demonstrated both on the denoising of RGB images and the full development of RAW images, opening the path to a systematic improvement of the texture acutance of real imaging devices.
arXiv Detail & Related papers (2024-02-20T10:47:06Z) - An efficient dual-branch framework via implicit self-texture enhancement for arbitrary-scale histopathology image super-resolution [18.881480825169053]
We propose an Implicit Self-Texture Enhancement-based dual-branch framework (ISTE) for arbitrary-scale SR of histopathology images.
ISTE outperforms existing fixed-scale and arbitrary-scale SR algorithms across various scaling factors.
arXiv Detail & Related papers (2024-01-28T10:00:45Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
We present a high-fidelity 3D generative adversarial network (GAN) inversion framework that can synthesize photo-realistic novel views.
Our approach enables high-fidelity 3D rendering from a single image, which is promising for various applications of AI-generated 3D content.
arXiv Detail & Related papers (2022-11-28T18:59:52Z) - Joint Learning of Deep Texture and High-Frequency Features for
Computer-Generated Image Detection [24.098604827919203]
We propose a joint learning strategy with deep texture and high-frequency features for CG image detection.
A semantic segmentation map is generated to guide the affine transformation operation.
The combination of the original image and the high-frequency components of the original and rendered images are fed into a multi-branch neural network equipped with attention mechanisms.
arXiv Detail & Related papers (2022-09-07T17:30:40Z) - Exploring Resolution and Degradation Clues as Self-supervised Signal for
Low Quality Object Detection [77.3530907443279]
We propose a novel self-supervised framework to detect objects in degraded low resolution images.
Our methods has achieved superior performance compared with existing methods when facing variant degradation situations.
arXiv Detail & Related papers (2022-08-05T09:36:13Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - Ensembling with Deep Generative Views [72.70801582346344]
generative models can synthesize "views" of artificial images that mimic real-world variations, such as changes in color or pose.
Here, we investigate whether such views can be applied to real images to benefit downstream analysis tasks such as image classification.
We use StyleGAN2 as the source of generative augmentations and investigate this setup on classification tasks involving facial attributes, cat faces, and cars.
arXiv Detail & Related papers (2021-04-29T17:58:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.