論文の概要: Global Search Optics: Automatically Exploring Optimal Solutions to Compact Computational Imaging Systems
- arxiv url: http://arxiv.org/abs/2404.19201v1
- Date: Tue, 30 Apr 2024 01:59:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 15:43:32.769301
- Title: Global Search Optics: Automatically Exploring Optimal Solutions to Compact Computational Imaging Systems
- Title(参考訳): Global Search Optics:Computational Imaging System のための最適解の自動探索
- Authors: Yao Gao, Qi Jiang, Shaohua Gao, Lei Sun, Kailun Yang, Kaiwei Wang,
- Abstract要約: モバイルビジョンの人気は、高度なコンパクト・コンピュート・イメージング・システムへの需要を生み出している。
共同設計パイプラインが最前線に現れ、2つの重要なコンポーネントがデータ駆動学習によって同時に最適化される。
本稿では,GSO(Global Search Optimization)を用いて,コンパクトな画像処理システムの設計を行う。
- 参考スコア(独自算出の注目度): 15.976326291076377
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The popularity of mobile vision creates a demand for advanced compact computational imaging systems, which call for the development of both a lightweight optical system and an effective image reconstruction model. Recently, joint design pipelines come to the research forefront, where the two significant components are simultaneously optimized via data-driven learning to realize the optimal system design. However, the effectiveness of these designs largely depends on the initial setup of the optical system, complicated by a non-convex solution space that impedes reaching a globally optimal solution. In this work, we present Global Search Optics (GSO) to automatically design compact computational imaging systems through two parts: (i) Fused Optimization Method for Automatic Optical Design (OptiFusion), which searches for diverse initial optical systems under certain design specifications; and (ii) Efficient Physic-aware Joint Optimization (EPJO), which conducts parallel joint optimization of initial optical systems and image reconstruction networks with the consideration of physical constraints, culminating in the selection of the optimal solution. Extensive experimental results on the design of three-piece (3P) sphere computational imaging systems illustrate that the GSO serves as a transformative end-to-end lens design paradigm for superior global optimal structure searching ability, which provides compact computational imaging systems with higher imaging quality compared to traditional methods. The source code will be made publicly available at https://github.com/wumengshenyou/GSO.
- Abstract(参考訳): モバイルビジョンの人気は、軽量光学系と効果的な画像再構成モデルの両方を開発することを要求する、高度なコンパクトなコンピュータ画像システムへの需要を生み出している。
最近、共同設計パイプラインが研究の最前線に登場し、2つの重要なコンポーネントがデータ駆動学習によって同時に最適化され、最適なシステム設計が実現されている。
しかし、これらの設計の有効性は光学系の初期設定に大きく依存しており、非凸解空間によって複雑化され、地球規模の最適解に到達することを妨げている。
本稿では,GSO(Global Search Optics)を用いて,2つの部分を通して,コンパクトな計算画像システムを自動的に設計する。
一 特定設計仕様に基づく多様な初期光学系を探索する自動光学設計のための融合最適化方法(オプティフュージョン)
(II) 物理制約を考慮した初期光学系と画像再構成ネットワークの並列結合最適化を行うEPJO(Efficient Physic-Aware Joint Optimization)により, 最適解の選択が決定される。
3ピース(3P)の球面計算画像システムの設計に関する大規模な実験結果から、GSOは、従来の手法に比べて高画質のコンパクトな計算画像システムを提供する優れた大域的最適構造探索能力のための、変換可能なエンドツーエンドのレンズ設計パラダイムとして機能することが示された。
ソースコードはhttps://github.com/wumengshenyou/GSOで公開されます。
関連論文リスト
- Highly Constrained Coded Aperture Imaging Systems Design Via a Knowledge Distillation Approach [15.662108754691864]
本稿では,高度に物理的に制約されたCOIシステムの設計のための知識蒸留(KD)フレームワークを提案する。
単色・マルチスペクトル画像再構成のためのバイナリ符号化開口単画素カメラを用いて,提案手法の有効性を検証した。
論文 参考訳(メタデータ) (2024-06-25T23:03:48Z) - Compositional Generative Inverse Design [69.22782875567547]
入力変数を設計して目的関数を最適化する逆設計は重要な問題である。
拡散モデルにより得られた学習エネルギー関数を最適化することにより、そのような逆例を避けることができることを示す。
N-body 相互作用タスクと2次元多面体設計タスクにおいて,実験時に学習した拡散モデルを構成することにより,初期状態と境界形状を設計できることを示す。
論文 参考訳(メタデータ) (2024-01-24T01:33:39Z) - Revealing the preference for correcting separated aberrations in joint
optic-image design [19.852225245159598]
我々は、スマートフォンやドローンのような複雑なシステムの効率的な共同設計を実現するために、分離された収差を持つ光学を特徴付ける。
視野が大きいレンズの真の撮像手順を再現する画像シミュレーションシステムを提案する。
共同設計における分離収差補正の選好は, 縦色収差, 横色収差, 球状収差, フィールド曲率, コマの順である。
論文 参考訳(メタデータ) (2023-09-08T14:12:03Z) - Photonic Structures Optimization Using Highly Data-Efficient Deep
Learning: Application To Nanofin And Annular Groove Phase Masks [40.11095094521714]
メタ表面は、薄膜光学の領域における光特性の操作のための柔軟なフレームワークを提供する。
本研究の目的は,これらのデバイスに対するサロゲート最適化フレームワークの導入である。
本フレームワークは、天文高コントラストイメージングへの応用に適した2種類の渦位相マスク(VPM)の開発に応用される。
論文 参考訳(メタデータ) (2023-09-05T07:19:14Z) - Deep Optical Coding Design in Computational Imaging [16.615106763985942]
計算光学画像(COI)システムは、そのセットアップにおいて光学的符号化要素(CE)を利用して、1つまたは複数のスナップショットで高次元シーンを符号化し、計算アルゴリズムを用いて復号する。
COIシステムの性能は、CEパターンと与えられたタスクを実行するのに使用される計算方法という、主要なコンポーネントの設計に大きく依存する。
ディープニューラルネットワーク(DNN)は、光エンコーダと計算デコーダを共同で検討するCEデータ駆動設計において、新たな地平を開拓した。
論文 参考訳(メタデータ) (2022-06-27T04:41:48Z) - Image-specific Convolutional Kernel Modulation for Single Image
Super-resolution [85.09413241502209]
本稿では,新しい画像特異的畳み込み変調カーネル(IKM)を提案する。
我々は、画像や特徴のグローバルな文脈情報を利用して、畳み込みカーネルを適応的に調整するための注意重みを生成する。
単一画像超解像実験により,提案手法は最先端手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-11-16T11:05:10Z) - A Framework for Discovering Optimal Solutions in Photonic Inverse Design [0.0]
フォトニック逆設計は複雑な光学系にとって必須の工学ツールとして登場した。
グローバル最適に近づく解を見つけることは、計算的に難解なタスクを示すかもしれない。
我々は,複雑な最適化空間上でのグローバル最適化に近い解の探索を高速化するフレームワークを開発する。
論文 参考訳(メタデータ) (2021-06-03T22:11:03Z) - Universal and Flexible Optical Aberration Correction Using Deep-Prior
Based Deconvolution [51.274657266928315]
そこで本研究では,収差画像とpsfマップを入力とし,レンズ固有深層プリエントを組み込んだ潜在高品質版を生成する,psf対応プラグイン・アンド・プレイ深層ネットワークを提案する。
具体的には、多彩なレンズの集合からベースモデルを事前訓練し、パラメータを迅速に精製して特定のレンズに適応させる。
論文 参考訳(メタデータ) (2021-04-07T12:00:38Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
本稿では,GDC(Generative, Discriminative, and Corrective)の原則を集約する,最適化に着想を得た統合学習フレームワークを提案する。
フレキシブルな組み合わせで最適化モデルを効果的に解くために,3つのプロパゲーティブモジュールを構築した。
低レベル視覚タスクにおける実験は、GDCの有効性と適応性を検証する。
論文 参考訳(メタデータ) (2020-12-10T03:24:53Z) - End-to-end Full Projector Compensation [81.19324259967742]
完全なプロジェクター補償は、プロジェクター入力画像を変更して、プロジェクター表面の幾何学的および測光的乱れを補償することを目的としている。
本稿では,この2つの問題を共同で解くために,CompenNeSt++というエンド・ツー・エンドの微分可能な最初のソリューションを提案する。
論文 参考訳(メタデータ) (2020-07-30T18:23:52Z) - Two-shot Spatially-varying BRDF and Shape Estimation [89.29020624201708]
形状とSVBRDFを段階的に推定した新しいディープラーニングアーキテクチャを提案する。
ドメインランダム化された幾何学と現実的な材料を用いた大規模合成学習データセットを作成する。
合成データセットと実世界のデータセットの両方の実験により、合成データセットでトレーニングされたネットワークが、実世界の画像に対してうまく一般化できることが示されている。
論文 参考訳(メタデータ) (2020-04-01T12:56:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。