論文の概要: Evaluating Lexicon Incorporation for Depression Symptom Estimation
- arxiv url: http://arxiv.org/abs/2404.19359v1
- Date: Tue, 30 Apr 2024 08:41:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 14:54:33.957163
- Title: Evaluating Lexicon Incorporation for Depression Symptom Estimation
- Title(参考訳): 抑うつ症状推定のための辞書導入の評価
- Authors: Kirill Milintsevich, Gaël Dias, Kairit Sirts,
- Abstract要約: 本稿では、抑うつ症状推定のためのトランスフォーマーモデルに感情、感情、およびドメイン固有の語彙を組み込むことによる影響について検討する。
その結果,事前学習言語モデルにおける外部知識の導入は,予測性能に有益であることが示唆された。
患者とセラピストの面接による抑うつレベルの推定について, 最新の研究結果を得た。
- 参考スコア(独自算出の注目度): 2.149662952755067
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores the impact of incorporating sentiment, emotion, and domain-specific lexicons into a transformer-based model for depression symptom estimation. Lexicon information is added by marking the words in the input transcripts of patient-therapist conversations as well as in social media posts. Overall results show that the introduction of external knowledge within pre-trained language models can be beneficial for prediction performance, while different lexicons show distinct behaviours depending on the targeted task. Additionally, new state-of-the-art results are obtained for the estimation of depression level over patient-therapist interviews.
- Abstract(参考訳): 本稿では、抑うつ症状推定のためのトランスフォーマーモデルに感情、感情、およびドメイン固有の語彙を組み込むことによる影響について検討する。
患者とセラピストの会話の入力書き起こしやソーシャルメディアの投稿で単語をマークすることで、語彙情報を追加する。
以上の結果から,事前学習した言語モデルにおける外部知識の導入は予測性能に有益であることが示唆された。
さらに, 患者・セラピストの面接におけるうつ病レベルを推定するために, 新たな検査結果を得た。
関連論文リスト
- LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
大規模言語モデル(LLM)を用いて、非構造的心理面接を、様々な精神科領域と人格領域にまたがる構造化された質問票に変換する。
得られた回答は、うつ病の標準化された精神医学的指標(PHQ-8)とPTSD(PCL-C)の予測に使用される特徴として符号化される。
論文 参考訳(メタデータ) (2024-06-09T09:03:11Z) - Speech-based Clinical Depression Screening: An Empirical Study [32.84863235794086]
本研究では,AIを用いた抑うつスクリーニングにおける音声信号の有用性について検討した。
参加者には、北京大学第6病院の外来から採用されているうつ病患者が含まれる。
音声と深部音声の特徴を各参加者の分節録音から抽出した。
論文 参考訳(メタデータ) (2024-06-05T09:43:54Z) - Enhancing Depression-Diagnosis-Oriented Chat with Psychological State Tracking [27.96718892323191]
Depression-diagnosis-oriented chatは、自己表現の患者を誘導し、うつ病検出の主要な症状を収集することを目的としている。
最近の研究は、面接に基づくうつ病の診断をシミュレートするために、タスク指向対話とchitchatを組み合わせることに焦点を当てている。
対話をガイドするための明確なフレームワークは検討されていない。
論文 参考訳(メタデータ) (2024-03-12T07:17:01Z) - Hierarchical attention interpretation: an interpretable speech-level
transformer for bi-modal depression detection [6.561362931802501]
うつ病は一般的な精神疾患である。機械学習によって実現された音声を用いた自動うつ病検出ツールは、うつ病の早期スクリーニングに役立つ。
本稿では、セグメントレベルのラベリングによるノイズと、モデル解釈可能性の欠如という、そのようなツールの臨床的実装を妨げる可能性のある2つの制限に対処する。
論文 参考訳(メタデータ) (2023-09-23T20:48:58Z) - The Relationship Between Speech Features Changes When You Get Depressed:
Feature Correlations for Improving Speed and Performance of Depression
Detection [69.88072583383085]
この研究は、抑うつが音声から抽出した特徴間の相関を変化させることを示す。
このような洞察を用いることで、SVMとLSTMに基づく抑うつ検出器のトレーニング速度と性能を向上させることができる。
論文 参考訳(メタデータ) (2023-07-06T09:54:35Z) - Semantic Similarity Models for Depression Severity Estimation [53.72188878602294]
本稿では、ソーシャルメディアの文章に基づいて、個人のうつ病の重症度を研究するための効率的なセマンティックパイプラインを提案する。
我々は,抑うつ症状と重度レベルに対応する代表訓練文の指標に対して意味的ランキングを生成するために,テストユーザ文を使用する。
本手法を2つのRedditベースのベンチマークで評価し,うつ病の重症度を指標として,最先端技術よりも30%改善した。
論文 参考訳(メタデータ) (2022-11-14T18:47:26Z) - Sentiment-Aware Word and Sentence Level Pre-training for Sentiment
Analysis [64.70116276295609]
SentiWSPは、WordレベルとSentenceレベルの事前トレーニングタスクを組み合わせた、Sentiment対応の事前トレーニング言語モデルである。
SentiWSPは、様々な文レベルおよびアスペクトレベルの感情分類ベンチマーク上で、最先端のパフォーマンスを新たに達成する。
論文 参考訳(メタデータ) (2022-10-18T12:25:29Z) - Pose-based Body Language Recognition for Emotion and Psychiatric Symptom
Interpretation [75.3147962600095]
通常のRGBビデオから始まるボディーランゲージに基づく感情認識のための自動フレームワークを提案する。
心理学者との連携により,精神症状予測の枠組みを拡張した。
提案されたフレームワークの特定のアプリケーションドメインは限られた量のデータしか供給しないため、フレームワークは小さなトレーニングセットで動作するように設計されている。
論文 参考訳(メタデータ) (2020-10-30T18:45:16Z) - Affective Conditioning on Hierarchical Networks applied to Depression
Detection from Transcribed Clinical Interviews [0.0]
抑うつは、被験者の気分だけでなく、言語の使用にも影響を及ぼす精神障害である。
我々は階層的注意ネットワークを用いて抑うつ者のインタビューを分類する。
我々は,情緒的レキシカから抽出した言語的特徴の条件付け機構により,モデルの注意層を増強する。
論文 参考訳(メタデータ) (2020-06-04T20:55:22Z) - A Tale of Two Perplexities: Sensitivity of Neural Language Models to
Lexical Retrieval Deficits in Dementia of the Alzheimer's Type [10.665308703417665]
近年,認知症患者が発声した音声サンプルと健常者から発声した音声サンプルを区別するための計算手法の使用に対する関心が高まっている。
2つのニューラルネットワークモデル(LM)からのパープレキシティ推定の違いは、最先端の性能をもたらすことが示されている。
我々は, ニューラルLMのパープレキシティは, 語彙周波数と強く, 差分関係が強く, 補間制御と認知症から生じる混合モデルは, 転写テキストでのみ訓練されたモデルに対する現在の最先端のモデルにより改善されることを見出した。
論文 参考訳(メタデータ) (2020-05-07T16:22:48Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。