論文の概要: Fairness in AI: challenges in bridging the gap between algorithms and law
- arxiv url: http://arxiv.org/abs/2404.19371v1
- Date: Tue, 30 Apr 2024 08:59:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 14:54:33.935708
- Title: Fairness in AI: challenges in bridging the gap between algorithms and law
- Title(参考訳): AIの公正性 - アルゴリズムと法律のギャップを埋める上での課題
- Authors: Giorgos Giannopoulos, Maria Psalla, Loukas Kavouras, Dimitris Sacharidis, Jakub Marecek, German M Matilla, Ioannis Emiris,
- Abstract要約: 実世界のシステムやユースケースにおける公平性の定義とアルゴリズムの仕様と採用のためのベストプラクティスと戦略を特定します。
実世界のユースケースアプリケーションに対して,特定の公平性の定義を選択する際に考慮する必要がある,一連のコア基準を導入する。
- 参考スコア(独自算出の注目度): 2.651076518493962
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we examine algorithmic fairness from the perspective of law aiming to identify best practices and strategies for the specification and adoption of fairness definitions and algorithms in real-world systems and use cases. We start by providing a brief introduction of current anti-discrimination law in the European Union and the United States and discussing the concepts of bias and fairness from an legal and ethical viewpoint. We then proceed by presenting a set of algorithmic fairness definitions by example, aiming to communicate their objectives to non-technical audiences. Then, we introduce a set of core criteria that need to be taken into account when selecting a specific fairness definition for real-world use case applications. Finally, we enumerate a set of key considerations and best practices for the design and employment of fairness methods on real-world AI applications
- Abstract(参考訳): 本稿では、現実のシステムやユースケースにおける公正性の定義とアルゴリズムの仕様化と導入のためのベストプラクティスと戦略を特定することを目的とした法の観点から、アルゴリズムの公正性について検討する。
まず、EUと米国における現行の差別防止法の簡単な導入と、法的・倫理的視点からバイアスと公平性の概念について議論することから始めます。
次に,アルゴリズムフェアネス定義の集合を例として提示し,その目的を非技術的観衆に伝達することを目指す。
そこで,本研究では,実世界のユースケースアプリケーションに対して,特定の公平性の定義を選択する際に考慮すべきコア基準について紹介する。
最後に、現実のAIアプリケーションにおけるフェアネス手法の設計と採用のための重要な考慮事項とベストプラクティスのセットを列挙する。
関連論文リスト
- DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
判例検索のための識別モデルであるDELTAを紹介する。
我々は浅層デコーダを利用して情報ボトルネックを作り、表現能力の向上を目指しています。
本手法は, 判例検索において, 既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2024-03-27T10:40:14Z) - AI Fairness in Practice [0.46671368497079174]
フェアネスの概念が何を意味するのか、どのように実践されるべきなのか、社会全体に幅広い見解がある。
このワークブックは、AIフェアネスを理解するためのコンテキストベースのアプローチが、プロジェクトチームにとって、不公平な偏見と差別がAIプロジェクトワークフロー全体にわたって生み出す多くの方法を特定し、緩和し、管理する上で、どのように役立つかを説明している。
論文 参考訳(メタデータ) (2024-02-19T23:02:56Z) - Evaluating the Fairness of Discriminative Foundation Models in Computer
Vision [51.176061115977774]
本稿では,CLIP (Contrastive Language-Pretraining) などの差別基盤モデルのバイアス評価のための新しい分類法を提案する。
そして、これらのモデルにおけるバイアスを緩和するための既存の手法を分類学に関して体系的に評価する。
具体的には,ゼロショット分類,画像検索,画像キャプションなど,OpenAIのCLIPとOpenCLIPモデルをキーアプリケーションとして評価する。
論文 参考訳(メタデータ) (2023-10-18T10:32:39Z) - Compatibility of Fairness Metrics with EU Non-Discrimination Laws:
Demographic Parity & Conditional Demographic Disparity [3.5607241839298878]
実証的な証拠は、機械学習(ML)技術によって駆動されるアルゴリズムによる決定が、法的に保護されたグループに対する差別を脅かしたり、新たな不公平な情報源を創り出すことを示唆している。
この研究は、公正度メトリックと公正度制約による法的公正性を保証するためのポイントを評価することを目的としています。
我々の実験と分析は、手元にあるケースと法的正当性に応じて、AIによる意思決定が法的な観点から公平である可能性を示唆している。
論文 参考訳(メタデータ) (2023-06-14T09:38:05Z) - Factoring the Matrix of Domination: A Critical Review and Reimagination
of Intersectionality in AI Fairness [55.037030060643126]
間欠性は、社会的不平等の持続性を調べるための重要な枠組みである。
我々は、公平性を効果的に運用するために、交差性を分析的枠組みとして採用することが重要であると論じる。
論文 参考訳(メタデータ) (2023-03-16T21:02:09Z) - Fair Off-Policy Learning from Observational Data [30.77874108094485]
我々は、公正な政治学学習のための新しい枠組みを提案する。
まず、政治以外の学習における公平性の概念を定式化する。
次に、異なる公正概念の下で最適なポリシーを学習するためのニューラルネットワークベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-15T10:47:48Z) - Fair Enough: Standardizing Evaluation and Model Selection for Fairness
Research in NLP [64.45845091719002]
現代のNLPシステムは様々なバイアスを示しており、モデル偏見に関する文献が増えている。
本稿では,その現状を解明し,公正学習における意味ある進歩の道筋を立案することを目的とする。
論文 参考訳(メタデータ) (2023-02-11T14:54:00Z) - Causal Fairness Analysis [68.12191782657437]
意思決定設定における公平性の問題を理解し、モデル化し、潜在的に解決するためのフレームワークを導入します。
我々のアプローチの主な洞察は、観測データに存在する格差の定量化と、基礎となる、しばしば観測されていない、因果的なメカニズムの収集を結びつけることである。
本研究は,文献中の異なる基準間の関係を整理し,説明するための最初の体系的試みであるフェアネスマップにおいて,本研究の成果を左右するものである。
論文 参考訳(メタデータ) (2022-07-23T01:06:34Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - Legal perspective on possible fairness measures - A legal discussion
using the example of hiring decisions (preprint) [0.0]
雇用決定の特定の適用に適用可能な、さまざまな公正の概念を説明します。
本研究は,それぞれの公正解釈について,その長所と短所を分析し,法的観点から評価する。
論文 参考訳(メタデータ) (2021-08-16T06:41:39Z) - Towards a Flexible Framework for Algorithmic Fairness [0.8379286663107844]
近年、アルゴリズム決定システムにおける非差別性を保証するための多くの異なる定義が提案されている。
本稿では, 最適な輸送手段を利用して, フェアネス定義の相違を補間するフレキシブルな枠組みを提案する。
論文 参考訳(メタデータ) (2020-10-15T16:06:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。